Properties

 Label 4.4.10025.1-16.3-a Base field 4.4.10025.1 Weight $[2, 2, 2, 2]$ Level norm $16$ Level $[16,4,\frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - 2]$ Dimension $2$ CM no Base change no

Related objects

• L-function not available

Base field 4.4.10025.1

Generator $$w$$, with minimal polynomial $$x^{4} - x^{3} - 11x^{2} + 10x + 20$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2, 2]$ Level: $[16,4,\frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{5}{2}w - 2]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $9$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} + 5x + 5$$
Norm Prime Eigenvalue
4 $[4, 2, -w + 2]$ $\phantom{-}e$
4 $[4, 2, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{9}{2}w - 4]$ $\phantom{-}0$
5 $[5, 5, -\frac{1}{2}w^{3} - \frac{3}{2}w^{2} + \frac{7}{2}w + 10]$ $-1$
5 $[5, 5, -\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{5}{2}w + 3]$ $\phantom{-}e + 4$
19 $[19, 19, \frac{1}{2}w^{3} + \frac{1}{2}w^{2} - \frac{9}{2}w - 3]$ $\phantom{-}e + 5$
19 $[19, 19, w - 1]$ $\phantom{-}2e$
31 $[31, 31, \frac{1}{2}w^{3} + \frac{3}{2}w^{2} - \frac{7}{2}w - 6]$ $-3e - 12$
31 $[31, 31, -w^{3} - 2w^{2} + 7w + 13]$ $-6e - 17$
49 $[49, 7, -2w^{3} - 2w^{2} + 15w + 9]$ $\phantom{-}6e + 15$
49 $[49, 7, \frac{1}{2}w^{3} + \frac{3}{2}w^{2} - \frac{9}{2}w - 4]$ $\phantom{-}e + 10$
59 $[59, 59, -\frac{3}{2}w^{3} - \frac{3}{2}w^{2} + \frac{17}{2}w + 8]$ $-9e - 25$
59 $[59, 59, -\frac{1}{2}w^{3} - \frac{5}{2}w^{2} + \frac{11}{2}w + 9]$ $-9e - 20$
61 $[61, 61, -\frac{1}{2}w^{3} - \frac{3}{2}w^{2} + \frac{9}{2}w + 9]$ $\phantom{-}2e + 13$
61 $[61, 61, -\frac{3}{2}w^{3} - \frac{5}{2}w^{2} + \frac{23}{2}w + 12]$ $-6e - 22$
71 $[71, 71, -\frac{3}{2}w^{3} - \frac{1}{2}w^{2} + \frac{23}{2}w - 1]$ $-e - 12$
71 $[71, 71, \frac{3}{2}w^{3} + \frac{3}{2}w^{2} - \frac{19}{2}w - 9]$ $-3e - 2$
79 $[79, 79, -\frac{1}{2}w^{3} - \frac{3}{2}w^{2} + \frac{11}{2}w + 4]$ $-4e - 10$
79 $[79, 79, -\frac{5}{2}w^{3} - \frac{7}{2}w^{2} + \frac{37}{2}w + 18]$ $\phantom{-}7e + 20$
81 $[81, 3, -3]$ $\phantom{-}2e + 13$
89 $[89, 89, w^{3} - 7w + 1]$ $-4e - 20$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4,2,-\frac{1}{2}w^{3} - \frac{1}{2}w^{2} + \frac{9}{2}w + 4]$ $-1$