Properties

Base field 3.3.733.1
Weight [2, 2, 2]
Level norm 7
Level $[7, 7, -w^{2} - 2w + 3]$
Label 3.3.733.1-7.1-c
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.733.1

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 7x + 8\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[7, 7, -w^{2} - 2w + 3]$
Label 3.3.733.1-7.1-c
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 7

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} \) \(\mathstrut +\mathstrut 2x \) \(\mathstrut -\mathstrut 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $\phantom{-}e$
4 $[4, 2, -w^{2} - w + 5]$ $-e - 2$
5 $[5, 5, -w + 3]$ $-e - 3$
7 $[7, 7, -w^{2} - 2w + 3]$ $-1$
11 $[11, 11, -w^{2} + 5]$ $\phantom{-}2e + 4$
13 $[13, 13, w + 1]$ $-e + 1$
23 $[23, 23, w^{2} - 3]$ $\phantom{-}2e - 4$
25 $[25, 5, w^{2} + 2w - 1]$ $-e + 3$
27 $[27, 3, -3]$ $\phantom{-}2e - 4$
29 $[29, 29, -3w + 7]$ $\phantom{-}e - 1$
43 $[43, 43, -3w^{2} - 2w + 17]$ $-6e - 8$
49 $[49, 7, -2w^{2} + w + 11]$ $\phantom{-}6e + 8$
67 $[67, 67, -2w^{2} - 4w + 3]$ $\phantom{-}2$
71 $[71, 71, -2w^{2} + w + 9]$ $\phantom{-}2e - 4$
73 $[73, 73, w^{2} + 2w - 7]$ $-3e - 7$
73 $[73, 73, -2w^{2} - 2w + 11]$ $-3e + 9$
73 $[73, 73, w - 5]$ $-6e - 6$
89 $[89, 89, 2w^{2} + w - 9]$ $\phantom{-}7e + 7$
89 $[89, 89, -w^{2} - 2w + 9]$ $\phantom{-}2e - 10$
89 $[89, 89, -2w - 1]$ $\phantom{-}7e + 11$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, -w^{2} - 2w + 3]$ $1$