Properties

Base field 3.3.733.1
Weight [2, 2, 2]
Level norm 16
Level $[16, 4, w^{2} - w - 3]$
Label 3.3.733.1-16.2-b
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.733.1

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 7x + 8\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[16, 4, w^{2} - w - 3]$
Label 3.3.733.1-16.2-b
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 13

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut +\mathstrut 3x^{3} \) \(\mathstrut -\mathstrut 3x^{2} \) \(\mathstrut -\mathstrut 9x \) \(\mathstrut +\mathstrut 3\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $\phantom{-}e$
4 $[4, 2, -w^{2} - w + 5]$ $\phantom{-}0$
5 $[5, 5, -w + 3]$ $\phantom{-}e^{3} + 2e^{2} - 2e - 3$
7 $[7, 7, -w^{2} - 2w + 3]$ $-e^{2} - 2e + 2$
11 $[11, 11, -w^{2} + 5]$ $-e^{2} - e$
13 $[13, 13, w + 1]$ $-e - 1$
23 $[23, 23, w^{2} - 3]$ $-2e^{3} - 4e^{2} + 7e + 6$
25 $[25, 5, w^{2} + 2w - 1]$ $-2e^{3} + 10e - 7$
27 $[27, 3, -3]$ $-2e - 5$
29 $[29, 29, -3w + 7]$ $\phantom{-}e^{3} - 7e$
43 $[43, 43, -3w^{2} - 2w + 17]$ $-2e^{2} - 2e + 5$
49 $[49, 7, -2w^{2} + w + 11]$ $-2e^{3} + 2e^{2} + 13e - 13$
67 $[67, 67, -2w^{2} - 4w + 3]$ $\phantom{-}e^{3} + e^{2} - 3e + 2$
71 $[71, 71, -2w^{2} + w + 9]$ $\phantom{-}e^{3} + 5e^{2} - e - 15$
73 $[73, 73, w^{2} + 2w - 7]$ $-2e^{2} - e + 14$
73 $[73, 73, -2w^{2} - 2w + 11]$ $\phantom{-}e^{3} + 4e^{2} + 3e - 7$
73 $[73, 73, w - 5]$ $-3e^{3} - 6e^{2} + 10e + 8$
89 $[89, 89, 2w^{2} + w - 9]$ $-3e^{3} - 7e^{2} + 6e + 3$
89 $[89, 89, -w^{2} - 2w + 9]$ $\phantom{-}2e^{3} - e^{2} - 16e + 6$
89 $[89, 89, -2w - 1]$ $-4e^{2} - 7e + 6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

The Atkin-Lehner eigenvalues for this form are not in the database.