Properties

Base field \(\Q(\zeta_{7})^+\)
Weight [2, 2, 2]
Level norm 64
Level $[64, 4, 4]$
Label 3.3.49.1-64.1-a
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\zeta_{7})^+\)

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 2x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[64, 4, 4]$
Label 3.3.49.1-64.1-a
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 1

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
7 $[7, 7, 2w^{2} - w - 3]$ $-4$
8 $[8, 2, 2]$ $\phantom{-}0$
13 $[13, 13, -w^{2} - w + 3]$ $\phantom{-}2$
13 $[13, 13, -w^{2} + 2w + 2]$ $\phantom{-}2$
13 $[13, 13, -2w^{2} + w + 2]$ $\phantom{-}2$
27 $[27, 3, 3]$ $-8$
29 $[29, 29, 3w^{2} - 2w - 4]$ $-6$
29 $[29, 29, 2w^{2} + w - 4]$ $-6$
29 $[29, 29, -w^{2} + 3w + 1]$ $-6$
41 $[41, 41, w^{2} - w - 5]$ $\phantom{-}6$
41 $[41, 41, 2w^{2} - 3w - 4]$ $\phantom{-}6$
41 $[41, 41, -3w^{2} + w + 3]$ $\phantom{-}6$
43 $[43, 43, w^{2} + 2w - 5]$ $-4$
43 $[43, 43, 2w^{2} + w - 5]$ $-4$
43 $[43, 43, 3w^{2} - 2w - 3]$ $-4$
71 $[71, 71, 4w^{2} - 3w - 5]$ $\phantom{-}0$
71 $[71, 71, 3w^{2} - 4w - 5]$ $\phantom{-}0$
71 $[71, 71, -4w^{2} + w + 5]$ $\phantom{-}0$
83 $[83, 83, w^{2} + w - 7]$ $\phantom{-}12$
83 $[83, 83, w^{2} - 2w - 6]$ $\phantom{-}12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
8 $[8, 2, 2]$ $-1$