Properties

Base field 3.3.316.1
Weight [2, 2, 2]
Level norm 37
Level $[37, 37, 2w^{2} - 2w - 5]$
Label 3.3.316.1-37.1-c
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.316.1

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 4x + 2\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[37, 37, 2w^{2} - 2w - 5]$
Label 3.3.316.1-37.1-c
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 11

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut +\mathstrut 2x^{3} \) \(\mathstrut -\mathstrut 2x^{2} \) \(\mathstrut -\mathstrut 3x \) \(\mathstrut +\mathstrut 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}e$
2 $[2, 2, w - 1]$ $\phantom{-}e^{3} + e^{2} - 2e - 1$
11 $[11, 11, w^{2} - w - 1]$ $\phantom{-}e^{3} + 4e^{2} - 6$
17 $[17, 17, -w^{2} - w + 3]$ $-3e^{3} - 7e^{2} + 5e + 6$
19 $[19, 19, w^{2} - w + 1]$ $-3e - 3$
23 $[23, 23, 2w - 3]$ $\phantom{-}e^{3} - 2e^{2} - 5e + 4$
27 $[27, 3, 3]$ $\phantom{-}e^{3} + 4e^{2} + 3e - 7$
29 $[29, 29, 2w + 1]$ $-4e^{2} - 6e + 5$
31 $[31, 31, 2w^{2} - 2w - 9]$ $\phantom{-}e^{2} + 2e - 3$
37 $[37, 37, 2w^{2} - 2w - 5]$ $-1$
41 $[41, 41, 2w^{2} - 9]$ $\phantom{-}3e^{3} + 5e^{2} - 4e - 8$
43 $[43, 43, w^{2} + w - 5]$ $-3e^{3} - 7e^{2} + 4e + 2$
43 $[43, 43, -3w^{2} + w + 15]$ $\phantom{-}e^{3} - 2e^{2} - 5e + 1$
43 $[43, 43, -2w^{2} + 2w + 11]$ $-4e^{3} - 2e^{2} + 8e - 3$
53 $[53, 53, w^{2} - w - 7]$ $-6e^{3} - 9e^{2} + 9e + 8$
61 $[61, 61, 4w^{2} - 2w - 15]$ $-3e^{3} - 5e^{2} + 2e + 2$
67 $[67, 67, -5w^{2} + 3w + 23]$ $\phantom{-}e^{3} + 4e^{2} + 2e - 11$
73 $[73, 73, 2w^{2} - 3]$ $\phantom{-}e^{3} - 4e^{2} - 4e + 5$
73 $[73, 73, -3w^{2} - w + 7]$ $\phantom{-}5e^{3} + 14e^{2} - 12$
73 $[73, 73, -6w^{2} + 4w + 25]$ $\phantom{-}e^{3} + 9e^{2} + 4e - 17$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
37 $[37, 37, 2w^{2} - 2w - 5]$ $1$