Base field 3.3.229.1
Generator \(w\), with minimal polynomial \(x^3 - 4 x - 1\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2, 2]$ |
| Level: | $[37, 37, 4 w^2 - 2 w - 13]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $6$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 2 | $[2, 2, w + 1]$ | $\phantom{-}1$ |
| 4 | $[4, 2, -w^2 + w + 3]$ | $\phantom{-}1$ |
| 7 | $[7, 7, w^2 - 2]$ | $\phantom{-}0$ |
| 13 | $[13, 13, -w^2 + 2 w + 2]$ | $\phantom{-}6$ |
| 23 | $[23, 23, -2 w + 1]$ | $\phantom{-}0$ |
| 27 | $[27, 3, 3]$ | $\phantom{-}8$ |
| 29 | $[29, 29, -2 w + 3]$ | $-6$ |
| 31 | $[31, 31, -2 w^2 + 2 w + 3]$ | $\phantom{-}4$ |
| 37 | $[37, 37, 4 w^2 - 2 w - 13]$ | $\phantom{-}1$ |
| 37 | $[37, 37, -2 w^2 + 5]$ | $\phantom{-}2$ |
| 37 | $[37, 37, 2 w^2 - w - 10]$ | $\phantom{-}2$ |
| 41 | $[41, 41, w^2 - 2 w - 4]$ | $\phantom{-}6$ |
| 47 | $[47, 47, w - 4]$ | $-4$ |
| 49 | $[49, 7, 2 w^2 - w - 4]$ | $\phantom{-}2$ |
| 53 | $[53, 53, 2 w^2 - 2 w - 7]$ | $-2$ |
| 53 | $[53, 53, 3 w^2 - 2 w - 8]$ | $\phantom{-}6$ |
| 53 | $[53, 53, 2 w + 5]$ | $\phantom{-}2$ |
| 59 | $[59, 59, 2 w^2 - 2 w - 9]$ | $\phantom{-}0$ |
| 67 | $[67, 67, 2 w^2 - 3]$ | $-4$ |
| 73 | $[73, 73, 2 w^2 + w - 8]$ | $-6$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $37$ | $[37, 37, 4 w^2 - 2 w - 13]$ | $-1$ |