/* This code can be loaded, or copied and pasted, into Magma. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. At the *bottom* of the file, there is code to recreate the Hilbert modular form in Magma, by creating the HMF space and cutting out the corresponding Hecke irreducible subspace. From there, you can ask for more eigenvalues or modify as desired. It is commented out, as this computation may be lengthy. */ P := PolynomialRing(Rationals()); g := P![-4, -9, -1, 1]; F := NumberField(g); ZF := Integers(F); NN := ideal; primesArray := [ [2, 2, w + 2], [3, 3, w + 1], [4, 2, -w^2 + 3*w + 3], [9, 3, -w^2 + 2*w + 7], [13, 13, w + 3], [13, 13, -w + 3], [13, 13, -w + 1], [17, 17, -w^2 - 2*w + 1], [23, 23, w^2 - 2*w - 5], [31, 31, 2*w + 3], [31, 31, -2*w^2 + 3*w + 15], [31, 31, 3*w + 7], [37, 37, 3*w^2 - 4*w - 27], [41, 41, -2*w^2 + 7*w + 1], [59, 59, w^2 - 3], [61, 61, 4*w^2 - 12*w - 11], [71, 71, w^2 - 2*w - 11], [97, 97, 3*w + 5], [101, 101, 2*w^2 - 6*w - 7], [103, 103, 2*w^2 - 3*w - 19], [107, 107, -3*w^2 + 10*w + 3], [109, 109, -w - 5], [109, 109, 5*w^2 - 8*w - 41], [109, 109, 2*w^2 - 2*w - 21], [113, 113, -4*w - 3], [125, 5, -5], [127, 127, 2*w^2 - 2*w - 17], [131, 131, 2*w - 3], [137, 137, 2*w^2 - 5*w - 5], [137, 137, w^2 - 4*w - 13], [137, 137, 2*w - 5], [139, 139, 2*w^2 - 3*w - 13], [151, 151, 2*w^2 - 9], [163, 163, 2*w^2 - 5*w - 11], [173, 173, -2*w^2 + 8*w - 1], [179, 179, w^2 - 15], [181, 181, -w^2 + 11], [191, 191, 3*w - 1], [193, 193, -6*w^2 + 16*w + 23], [197, 197, 2*w^2 - 8*w + 3], [199, 199, 4*w^2 - 5*w - 35], [211, 211, 2*w - 9], [223, 223, 3*w^2 - 8*w - 13], [227, 227, 3*w^2 + 2*w - 11], [227, 227, w^2 - 4*w - 15], [227, 227, w - 7], [229, 229, -4*w^2 + 15*w - 1], [239, 239, -4*w - 5], [257, 257, 2*w^2 + w - 9], [263, 263, -w^2 - 6*w - 7], [269, 269, w^2 - 4*w - 7], [277, 277, 4*w^2 - 7*w - 33], [281, 281, 6*w^2 - 17*w - 19], [281, 281, 3*w^2 - 8*w - 9], [281, 281, -5*w - 1], [289, 17, -2*w^2 + 9*w - 5], [293, 293, -3*w^2 + 8*w + 7], [293, 293, 2*w^2 + 5*w - 1], [293, 293, 6*w^2 - 10*w - 47], [307, 307, 2*w^2 - 2*w - 3], [313, 313, 2*w^2 - 4*w - 7], [317, 317, 3*w^2 - 6*w - 17], [317, 317, 2*w^2 - 7*w - 7], [317, 317, 2*w^2 + 2*w - 7], [331, 331, 2*w^2 + 7*w + 7], [337, 337, w^2 - 4*w - 9], [337, 337, 3*w^2 - 4*w - 29], [337, 337, w^2 - 6*w - 5], [343, 7, -7], [347, 347, 2*w^2 + 4*w - 3], [349, 349, 2*w^2 - w - 25], [359, 359, -2*w^2 - w + 5], [379, 379, 4*w^2 - 9*w - 23], [379, 379, -5*w^2 + 18*w + 3], [379, 379, 2*w^2 - 3*w - 21], [383, 383, -w^2 + 6*w - 7], [397, 397, 2*w^2 - 7], [401, 401, 9*w^2 - 28*w - 21], [419, 419, 3*w^2 - 6*w - 25], [419, 419, 4*w^2 - 7*w - 27], [419, 419, 4*w^2 - 6*w - 29], [433, 433, 8*w^2 - 13*w - 61], [433, 433, -6*w^2 + 23*w - 3], [433, 433, -w^2 - 3], [443, 443, -2*w^2 + 5*w + 15], [449, 449, -7*w^2 + 12*w + 51], [457, 457, 2*w^2 - 2*w - 9], [457, 457, -w^2 - 6*w - 1], [457, 457, 6*w^2 - 11*w - 43], [461, 461, -5*w^2 + 6*w + 45], [463, 463, 2*w^2 - 5*w - 17], [463, 463, 3*w - 5], [463, 463, 2*w^2 - 3*w - 7], [467, 467, -3*w^2 + 10*w + 9], [479, 479, 3*w - 7], [487, 487, 7*w^2 - 20*w - 23], [487, 487, -4*w - 11], [487, 487, 5*w + 7], [509, 509, 2*w^2 - 2*w - 5], [523, 523, -8*w^2 + 28*w + 7], [529, 23, 2*w^2 - w - 7], [541, 541, 3*w^2 + 2*w - 9], [547, 547, -6*w - 1], [557, 557, 2*w^2 - 13], [563, 563, w - 9], [569, 569, -8*w^2 + 27*w + 9], [571, 571, 5*w^2 - 14*w - 15], [577, 577, w^2 + 4*w + 7], [587, 587, 4*w^2 - 4*w - 27], [593, 593, 2*w^2 + 5*w + 5], [599, 599, -2*w - 9], [599, 599, -w^2 + 6*w - 1], [599, 599, 2*w^2 - w - 19], [607, 607, 4*w - 13], [617, 617, -5*w - 13], [617, 617, -w^2 - 2*w - 5], [617, 617, 4*w^2 - 16*w + 5], [619, 619, 3*w^2 - 8*w - 15], [643, 643, -6*w - 11], [647, 647, -w^2 + 17], [647, 647, 2*w^2 - 9*w - 7], [647, 647, 2*w^2 - 6*w - 21], [659, 659, 4*w^2 - 8*w - 23], [661, 661, 2*w - 11], [673, 673, 3*w^2 - 13], [677, 677, 5*w^2 - 16*w - 13], [677, 677, -3*w^2 - 4*w + 3], [677, 677, 5*w^2 - 6*w - 43], [691, 691, 6*w^2 - 12*w - 37], [701, 701, -3*w^2 + 12*w - 1], [709, 709, -6*w^2 + 21*w + 7], [719, 719, -w^2 + 6*w - 3], [733, 733, -w - 9], [733, 733, 2*w^2 + w - 11], [733, 733, -2*w^2 + 9*w - 3], [739, 739, 6*w^2 - 17*w - 21], [743, 743, -2*w^2 - 6*w + 1], [751, 751, 4*w^2 - 8*w - 29], [751, 751, -w^2 - 8*w - 11], [751, 751, 4*w^2 - 21], [757, 757, 2*w^2 - 9*w - 1], [761, 761, -4*w^2 + 10*w + 15], [809, 809, w^2 + 2*w - 19], [811, 811, -7*w - 17], [823, 823, 3*w^2 - 17], [827, 827, -9*w - 19], [857, 857, 4*w^2 + 14*w + 9], [857, 857, 4*w^2 - 16*w + 3], [857, 857, 4*w^2 - 6*w - 27], [859, 859, -2*w^2 + 5*w - 1], [863, 863, 12*w^2 - 37*w - 29], [877, 877, 3*w^2 - 6*w - 7], [877, 877, 3*w^2 - 6*w - 31], [877, 877, 3*w^2 - 6*w - 13], [907, 907, 8*w^2 - 14*w - 57], [907, 907, 4*w^2 - 7*w - 25], [907, 907, 8*w^2 - 24*w - 19], [911, 911, -3*w - 11], [919, 919, -16*w^2 + 53*w + 23], [929, 929, 2*w^2 - 6*w - 19], [937, 937, w^2 - 6*w - 15], [937, 937, 3*w^2 - 4*w - 17], [937, 937, -3*w^2 + 12*w + 1], [941, 941, -2*w^2 + 6*w + 15], [947, 947, -2*w^2 - 3*w + 7], [953, 953, 2*w^2 - 25], [971, 971, 3*w^2 - 10*w - 11], [971, 971, 3*w^2 - 12*w + 5], [971, 971, -4*w^2 + 10*w + 9], [977, 977, 2*w^2 - 8*w - 9], [983, 983, -5*w^2 + 8*w + 35], [991, 991, 4*w^2 + 5*w - 7]]; primes := [ideal : I in primesArray]; heckePol := x^6 - 2*x^5 - 11*x^4 + 22*x^3 + 17*x^2 - 36*x + 1; K := NumberField(heckePol); heckeEigenvaluesArray := [-1/4*e^5 + 1/4*e^4 + 3*e^3 - 5/2*e^2 - 23/4*e + 9/4, -1, e, -1/2*e^5 + 11/2*e^3 + 1/2*e^2 - 10*e - 7/2, -1/2*e^5 + 1/2*e^4 + 11/2*e^3 - 11/2*e^2 - 9*e + 5, -1/2*e^3 - 1/2*e^2 + 9/2*e + 1/2, e^5 - 1/2*e^4 - 23/2*e^3 + 9/2*e^2 + 41/2*e - 2, 1/2*e^5 - 1/2*e^4 - 11/2*e^3 + 11/2*e^2 + 8*e - 8, -1/2*e^5 + 1/2*e^4 + 6*e^3 - 6*e^2 - 27/2*e + 19/2, 1/2*e^4 - 4*e^2 - e + 1/2, 3/2*e^5 - e^4 - 17*e^3 + 9*e^2 + 61/2*e - 7, e^2 - 5, 1/2*e^5 - 1/2*e^4 - 5*e^3 + 5*e^2 + 9/2*e - 13/2, -1/2*e^4 + 1/2*e^3 + 11/2*e^2 - 3/2*e - 12, -1/2*e^5 - 1/2*e^4 + 7*e^3 + 6*e^2 - 41/2*e - 15/2, -2*e^5 + 1/2*e^4 + 47/2*e^3 - 11/2*e^2 - 93/2*e + 2, -e^5 + 1/2*e^4 + 11*e^3 - 3*e^2 - 17*e - 21/2, -3/2*e^5 + 35/2*e^3 - 1/2*e^2 - 36*e + 1/2, 1/2*e^5 + 1/2*e^4 - 13/2*e^3 - 15/2*e^2 + 16*e + 17, 5/2*e^5 - 3/2*e^4 - 28*e^3 + 14*e^2 + 95/2*e - 21/2, -2*e^5 + 2*e^4 + 23*e^3 - 18*e^2 - 45*e + 16, 2*e^5 - 3/2*e^4 - 47/2*e^3 + 31/2*e^2 + 95/2*e - 16, 1/2*e^5 - e^4 - 5*e^3 + 10*e^2 + 7/2*e - 6, e^5 - 21/2*e^3 - 7/2*e^2 + 25/2*e + 33/2, 3/2*e^5 + 1/2*e^4 - 37/2*e^3 - 13/2*e^2 + 37*e + 14, -3*e^5 + 2*e^4 + 34*e^3 - 18*e^2 - 61*e + 16, 7/2*e^5 - 3/2*e^4 - 41*e^3 + 14*e^2 + 155/2*e - 25/2, -e^5 + 12*e^3 - 25*e - 2, 5/2*e^5 - 57/2*e^3 - 1/2*e^2 + 54*e + 9/2, -2*e^5 + 3/2*e^4 + 43/2*e^3 - 29/2*e^2 - 59/2*e + 15, 1/2*e^5 - 9/2*e^3 - 5/2*e^2 + 21/2, -2*e^5 + e^4 + 23*e^3 - 9*e^2 - 39*e + 10, -3/2*e^5 + 1/2*e^4 + 18*e^3 - 2*e^2 - 69/2*e - 25/2, 1/2*e^5 - 2*e^4 - 6*e^3 + 18*e^2 + 25/2*e - 11, 7/2*e^5 - e^4 - 83/2*e^3 + 13/2*e^2 + 86*e - 11/2, -2*e^5 + 2*e^4 + 21*e^3 - 19*e^2 - 29*e + 19, -3/2*e^5 + 1/2*e^4 + 33/2*e^3 - 7/2*e^2 - 29*e - 3, 1/2*e^5 - 3/2*e^4 - 5*e^3 + 15*e^2 + 13/2*e - 47/2, -1/2*e^5 + 6*e^3 - 2*e^2 - 21/2*e + 1, 1/2*e^5 - 1/2*e^4 - 11/2*e^3 + 13/2*e^2 + 13*e - 10, 1/2*e^4 + e^3 - 7*e^2 - 6*e + 23/2, 1/2*e^5 + 1/2*e^4 - 6*e^3 - 6*e^2 + 35/2*e + 19/2, 9/2*e^5 - 3/2*e^4 - 50*e^3 + 12*e^2 + 167/2*e + 23/2, -e^5 + e^4 + 12*e^3 - 7*e^2 - 23*e - 6, 3*e^2 - 27, -1/2*e^4 + 4*e^2 + 3*e - 13/2, 1/2*e^4 + 1/2*e^3 - 11/2*e^2 - 17/2*e + 1, -2*e^5 + e^4 + 23*e^3 - 11*e^2 - 41*e + 14, -3*e^5 + e^4 + 65/2*e^3 - 13/2*e^2 - 105/2*e - 23/2, -5/2*e^5 + 1/2*e^4 + 29*e^3 - 2*e^2 - 105/2*e - 1/2, e^3 - 2*e^2 - 7*e + 14, e^5 - e^4 - 21/2*e^3 + 21/2*e^2 + 13/2*e - 5/2, -9/2*e^5 + 5/2*e^4 + 101/2*e^3 - 49/2*e^2 - 84*e + 8, -3/2*e^5 + 35/2*e^3 + 3/2*e^2 - 30*e - 31/2, -3/2*e^5 + 3/2*e^4 + 17*e^3 - 15*e^2 - 63/2*e + 31/2, 7/2*e^5 - 81/2*e^3 - 1/2*e^2 + 79*e + 5/2, -4*e^5 + 95/2*e^3 + 3/2*e^2 - 191/2*e - 35/2, -3*e^5 + 3/2*e^4 + 69/2*e^3 - 27/2*e^2 - 135/2*e, 1/2*e^5 + 3/2*e^4 - 7*e^3 - 19*e^2 + 45/2*e + 55/2, e^5 + e^4 - 14*e^3 - 11*e^2 + 41*e + 22, -3/2*e^5 + 2*e^4 + 18*e^3 - 18*e^2 - 67/2*e + 3, 4*e^5 - 3/2*e^4 - 91/2*e^3 + 29/2*e^2 + 171/2*e - 17, 3/2*e^5 - 1/2*e^4 - 41/2*e^3 + 9/2*e^2 + 55*e - 4, -e^5 + 11*e^3 + 2*e^2 - 24*e - 22, -2*e^5 + e^4 + 23*e^3 - 7*e^2 - 45*e - 2, 3/2*e^5 + e^4 - 19*e^3 - 14*e^2 + 85/2*e + 30, -3*e^5 - 1/2*e^4 + 71/2*e^3 + 19/2*e^2 - 153/2*e - 21, 3*e^5 - 5/2*e^4 - 69/2*e^3 + 47/2*e^2 + 131/2*e - 31, 2*e^5 - 3*e^4 - 21*e^3 + 28*e^2 + 25*e - 23, -3/2*e^5 + 3*e^4 + 19*e^3 - 31*e^2 - 85/2*e + 33, 2*e^5 - e^4 - 22*e^3 + 10*e^2 + 28*e - 11, -3/2*e^5 + e^4 + 15*e^3 - 8*e^2 - 33/2*e - 2, 1/2*e^5 - 3/2*e^4 - 6*e^3 + 14*e^2 + 39/2*e - 37/2, 1/2*e^5 - 5*e^3 + 2*e^2 + 19/2*e - 11, -3/2*e^5 - 3/2*e^4 + 20*e^3 + 14*e^2 - 101/2*e - 25/2, 9/2*e^5 - 5/2*e^4 - 52*e^3 + 22*e^2 + 191/2*e - 39/2, 9/2*e^5 - 5/2*e^4 - 103/2*e^3 + 49/2*e^2 + 91*e - 30, -3/2*e^4 - 1/2*e^3 + 35/2*e^2 + 13/2*e - 22, -1/2*e^5 + 3/2*e^4 + 4*e^3 - 14*e^2 + 9/2*e + 17/2, -4*e^5 + e^4 + 46*e^3 - 4*e^2 - 80*e - 23, -3/2*e^5 + 2*e^4 + 16*e^3 - 21*e^2 - 35/2*e + 34, 5/2*e^5 - 2*e^4 - 29*e^3 + 20*e^2 + 103/2*e - 1, -1/2*e^5 + 7/2*e^3 + 9/2*e^2 + 12*e - 31/2, -4*e^5 + 3*e^4 + 91/2*e^3 - 59/2*e^2 - 183/2*e + 65/2, -e^3 - 4*e^2 + 7*e + 10, -4*e^5 + 49*e^3 - 109*e + 2, 7/2*e^5 - 2*e^4 - 81/2*e^3 + 33/2*e^2 + 79*e - 25/2, -5/2*e^5 + 1/2*e^4 + 31*e^3 - e^2 - 137/2*e - 27/2, -4*e^5 + 2*e^4 + 95/2*e^3 - 35/2*e^2 - 195/2*e + 35/2, -e^5 - 1/2*e^4 + 25/2*e^3 + 17/2*e^2 - 59/2*e - 14, -3*e^5 + 1/2*e^4 + 36*e^3 - e^2 - 76*e - 41/2, -3/2*e^5 - e^4 + 18*e^3 + 11*e^2 - 83/2*e - 13, -7/2*e^5 + 5/2*e^4 + 41*e^3 - 24*e^2 - 155/2*e + 51/2, -e^5 + 12*e^3 + 3*e^2 - 31*e - 11, -1/2*e^5 - 1/2*e^4 + 6*e^3 + 5*e^2 - 15/2*e + 11/2, 5*e^5 - 58*e^3 - 2*e^2 + 113*e + 22, 1/2*e^5 - 3/2*e^4 - 8*e^3 + 15*e^2 + 51/2*e - 47/2, -7/2*e^5 + 1/2*e^4 + 42*e^3 - 3*e^2 - 181/2*e + 13/2, -3*e^5 + 4*e^4 + 32*e^3 - 38*e^2 - 51*e + 30, -1/2*e^5 + 2*e^4 + 3*e^3 - 22*e^2 + 33/2*e + 25, -5/2*e^5 + 5/2*e^4 + 57/2*e^3 - 45/2*e^2 - 52*e + 22, -e^5 + e^4 + 8*e^3 - 8*e^2 + 9*e + 13, 9/2*e^5 - 5/2*e^4 - 50*e^3 + 18*e^2 + 167/2*e + 5/2, -1/2*e^5 - e^4 + 13/2*e^3 + 25/2*e^2 - 14*e - 87/2, -5/2*e^5 - 5/2*e^4 + 29*e^3 + 23*e^2 - 113/2*e - 53/2, 5/2*e^5 + 1/2*e^4 - 29*e^3 - 9*e^2 + 117/2*e - 3/2, -3/2*e^5 - 1/2*e^4 + 15*e^3 + 11*e^2 - 27/2*e - 77/2, 5/2*e^5 + 1/2*e^4 - 65/2*e^3 - 13/2*e^2 + 86*e + 10, -3*e^5 + 38*e^3 + 2*e^2 - 83*e - 2, 5/2*e^5 - 5/2*e^4 - 59/2*e^3 + 55/2*e^2 + 58*e - 12, 7/2*e^5 - 7/2*e^4 - 39*e^3 + 34*e^2 + 127/2*e - 53/2, 3/2*e^5 - 16*e^3 - 5*e^2 + 55/2*e + 36, 7/2*e^5 - 3/2*e^4 - 44*e^3 + 13*e^2 + 209/2*e - 39/2, -3/2*e^4 + 2*e^3 + 15*e^2 - 27*e - 33/2, 7/2*e^5 - e^4 - 81/2*e^3 + 11/2*e^2 + 81*e + 31/2, -3/2*e^5 - 1/2*e^4 + 20*e^3 + 5*e^2 - 113/2*e - 1/2, 6*e^5 - 7/2*e^4 - 137/2*e^3 + 71/2*e^2 + 237/2*e - 24, e^4 - 3*e^3 - 7*e^2 + 25*e - 4, 3*e^5 - 2*e^4 - 35*e^3 + 12*e^2 + 68*e + 22, 13/2*e^5 + 1/2*e^4 - 77*e^3 - 7*e^2 + 313/2*e + 65/2, -e^5 - e^4 + 15*e^3 + 12*e^2 - 56*e - 17, 5/2*e^5 + 2*e^4 - 29*e^3 - 22*e^2 + 119/2*e + 23, 3/2*e^5 + 1/2*e^4 - 17*e^3 - 6*e^2 + 55/2*e - 13/2, -8*e^5 + 2*e^4 + 183/2*e^3 - 33/2*e^2 - 343/2*e - 11/2, 13/2*e^5 - 2*e^4 - 149/2*e^3 + 39/2*e^2 + 138*e - 7/2, 1/2*e^5 - 3*e^3 - 2*e^2 - 25/2*e + 11, e^5 - 3/2*e^4 - 21/2*e^3 + 17/2*e^2 + 21/2*e + 12, e^5 - 23/2*e^3 - 1/2*e^2 + 69/2*e + 25/2, 1/2*e^5 - 3/2*e^4 - 6*e^3 + 8*e^2 + 31/2*e + 39/2, 17/2*e^5 - 3*e^4 - 199/2*e^3 + 59/2*e^2 + 201*e - 73/2, 7/2*e^5 + 1/2*e^4 - 85/2*e^3 - 15/2*e^2 + 94*e + 24, -11/2*e^5 + 7/2*e^4 + 62*e^3 - 34*e^2 - 233/2*e + 61/2, 3/2*e^5 - 2*e^4 - 27/2*e^3 + 29/2*e^2 + 6*e + 19/2, e^5 - e^4 - 9*e^3 + 4*e^2 + 3, -5/2*e^5 + 53/2*e^3 + 7/2*e^2 - 43*e - 73/2, -4*e^5 + 3/2*e^4 + 43*e^3 - 14*e^2 - 62*e - 1/2, 5/2*e^5 - 1/2*e^4 - 29*e^3 + 7*e^2 + 125/2*e - 37/2, -5/2*e^5 + 5/2*e^4 + 29*e^3 - 22*e^2 - 125/2*e + 31/2, 4*e^5 - 49*e^3 - 7*e^2 + 107*e + 25, -5/2*e^5 + 3*e^4 + 27*e^3 - 24*e^2 - 91/2*e - 14, -7*e^5 + 3*e^4 + 79*e^3 - 34*e^2 - 140*e + 49, -6*e^5 + e^4 + 135/2*e^3 - 3/2*e^2 - 247/2*e - 75/2, 3/2*e^5 - 1/2*e^4 - 43/2*e^3 + 19/2*e^2 + 62*e - 27, -5/2*e^5 + 9/2*e^4 + 29*e^3 - 47*e^2 - 89/2*e + 113/2, -2*e^5 + 21*e^3 - e^2 - 19*e - 7, -5/2*e^5 + 9/2*e^4 + 27*e^3 - 41*e^2 - 97/2*e + 49/2, -13/2*e^5 + 7/2*e^4 + 78*e^3 - 33*e^2 - 315/2*e + 67/2, 3*e^5 - 2*e^4 - 73/2*e^3 + 41/2*e^2 + 147/2*e - 77/2, -2*e^5 - e^4 + 43/2*e^3 + 17/2*e^2 - 59/2*e - 35/2, e^3 - e^2 - 11*e + 7, -e^5 + 3*e^4 + 7*e^3 - 31*e^2 + 6*e + 40, 6*e^5 - 139/2*e^3 - 13/2*e^2 + 275/2*e + 73/2, -2*e^5 + 39/2*e^3 - 5/2*e^2 - 27/2*e + 5/2, -13/2*e^5 + 4*e^4 + 73*e^3 - 34*e^2 - 243/2*e + 3, -2*e^5 + e^4 + 19*e^3 - 11*e^2 - 17*e + 18, -3*e^5 + 2*e^4 + 31*e^3 - 23*e^2 - 40*e + 41, 11*e^5 - 7*e^4 - 124*e^3 + 69*e^2 + 209*e - 54, 3/2*e^5 - 2*e^4 - 19*e^3 + 23*e^2 + 85/2*e - 38, -5/2*e^5 + 3/2*e^4 + 27*e^3 - 11*e^2 - 77/2*e - 65/2, 3/2*e^5 + 1/2*e^4 - 19*e^3 - 9*e^2 + 115/2*e + 37/2, e^5 - e^4 - 23/2*e^3 + 37/2*e^2 + 37/2*e - 75/2, -5*e^5 + 2*e^4 + 60*e^3 - 18*e^2 - 135*e + 18, -3/2*e^5 - e^4 + 31/2*e^3 + 21/2*e^2 - 17*e - 53/2, 9/2*e^5 - 3/2*e^4 - 101/2*e^3 + 29/2*e^2 + 92*e - 3, 6*e^5 - 3*e^4 - 71*e^3 + 33*e^2 + 147*e - 56, e^5 + e^4 - 12*e^3 - 14*e^2 + 25*e + 57, 11/2*e^5 - 3*e^4 - 66*e^3 + 30*e^2 + 287/2*e - 58, 11/2*e^5 - 3*e^4 - 61*e^3 + 26*e^2 + 205/2*e - 18, -5*e^5 + 5/2*e^4 + 55*e^3 - 26*e^2 - 77*e + 5/2, 15/2*e^5 - 5*e^4 - 169/2*e^3 + 87/2*e^2 + 151*e - 73/2, 2*e^5 - 3/2*e^4 - 24*e^3 + 16*e^2 + 55*e - 23/2, 2*e^5 - 3*e^4 - 21*e^3 + 30*e^2 + 23*e - 15]; heckeEigenvalues := AssociativeArray(); for i := 1 to #heckeEigenvaluesArray do heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i]; end for; ALEigenvalues := AssociativeArray(); ALEigenvalues[ideal] := 1; // EXAMPLE: // pp := Factorization(2*ZF)[1][1]; // heckeEigenvalues[pp]; print "To reconstruct the Hilbert newform f, type f, iso := Explode(make_newform());"; function make_newform(); M := HilbertCuspForms(F, NN); S := NewSubspace(M); // SetVerbose("ModFrmHil", 1); NFD := NewformDecomposition(S); newforms := [* Eigenform(U) : U in NFD *]; if #newforms eq 0 then; print "No Hilbert newforms at this level"; return 0; end if; print "Testing ", #newforms, " possible newforms"; newforms := [* f: f in newforms | IsIsomorphic(BaseField(f), K) *]; print #newforms, " newforms have the correct Hecke field"; if #newforms eq 0 then; print "No Hilbert newform found with the correct Hecke field"; return 0; end if; autos := Automorphisms(K); xnewforms := [* *]; for f in newforms do; if K eq RationalField() then; Append(~xnewforms, [* f, autos[1] *]); else; flag, iso := IsIsomorphic(K,BaseField(f)); for a in autos do; Append(~xnewforms, [* f, a*iso *]); end for; end if; end for; newforms := xnewforms; for P in primes do; xnewforms := [* *]; for f_iso in newforms do; f, iso := Explode(f_iso); if HeckeEigenvalue(f,P) eq iso(heckeEigenvalues[P]) then; Append(~xnewforms, f_iso); end if; end for; newforms := xnewforms; if #newforms eq 0 then; print "No Hilbert newform found which matches the Hecke eigenvalues"; return 0; else if #newforms eq 1 then; print "success: unique match"; return newforms[1]; end if; end if; end for; print #newforms, "Hilbert newforms found which match the Hecke eigenvalues"; return newforms[1]; end function;