Properties

 Base field 3.3.1129.1 Weight [2, 2, 2] Level norm 8 Level $[8, 2, 2]$ Label 3.3.1129.1-8.1-b Dimension 14 CM no Base change no

Related objects

• L-function not available

Base field 3.3.1129.1

Generator $$w$$, with minimal polynomial $$x^{3} - 7x - 3$$; narrow class number $$2$$ and class number $$1$$.

Form

 Weight [2, 2, 2] Level $[8, 2, 2]$ Label 3.3.1129.1-8.1-b Dimension 14 Is CM no Is base change no Parent newspace dimension 16

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{14}$$ $$\mathstrut -\mathstrut 31x^{12}$$ $$\mathstrut +\mathstrut 380x^{10}$$ $$\mathstrut -\mathstrut 2329x^{8}$$ $$\mathstrut +\mathstrut 7373x^{6}$$ $$\mathstrut -\mathstrut 10939x^{4}$$ $$\mathstrut +\mathstrut 5378x^{2}$$ $$\mathstrut -\mathstrut 676$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $-\frac{50}{631}e^{12} + \frac{1340}{631}e^{10} - \frac{13372}{631}e^{8} + \frac{60540}{631}e^{6} - \frac{118799}{631}e^{4} + \frac{73108}{631}e^{2} - \frac{12074}{631}$
3 $[3, 3, w + 1]$ $\phantom{-}e$
3 $[3, 3, w + 2]$ $\phantom{-}\frac{589}{16406}e^{13} - \frac{15659}{16406}e^{11} + \frac{77070}{8203}e^{9} - \frac{676437}{16406}e^{7} + \frac{1211023}{16406}e^{5} - \frac{478801}{16406}e^{3} + \frac{19336}{8203}e$
8 $[8, 2, 2]$ $\phantom{-}1$
11 $[11, 11, -w^{2} + 5]$ $\phantom{-}\frac{122}{8203}e^{13} - \frac{3522}{8203}e^{11} + \frac{39392}{8203}e^{9} - \frac{212963}{8203}e^{7} + \frac{560089}{8203}e^{5} - \frac{615086}{8203}e^{3} + \frac{179159}{8203}e$
13 $[13, 13, w^{2} - w - 7]$ $-\frac{402}{8203}e^{13} + \frac{10395}{8203}e^{11} - \frac{99005}{8203}e^{9} + \frac{417584}{8203}e^{7} - \frac{708953}{8203}e^{5} + \frac{218199}{8203}e^{3} + \frac{95481}{8203}e$
17 $[17, 17, -w^{2} + w + 4]$ $-\frac{264}{8203}e^{13} + \frac{6949}{8203}e^{11} - \frac{67222}{8203}e^{9} + \frac{282927}{8203}e^{7} - \frac{434728}{8203}e^{5} - \frac{45619}{8203}e^{3} + \frac{162854}{8203}e$
19 $[19, 19, -w^{2} - w + 4]$ $\phantom{-}\frac{50}{631}e^{12} - \frac{1340}{631}e^{10} + \frac{13372}{631}e^{8} - \frac{59909}{631}e^{6} + \frac{110596}{631}e^{4} - \frac{47237}{631}e^{2} + \frac{3240}{631}$
29 $[29, 29, 2w^{2} - 2w - 11]$ $-\frac{93}{16406}e^{13} + \frac{1609}{16406}e^{11} - \frac{2239}{8203}e^{9} - \frac{62435}{16406}e^{7} + \frac{459845}{16406}e^{5} - \frac{969203}{16406}e^{3} + \frac{175686}{8203}e$
31 $[31, 31, w^{2} - 2w - 4]$ $\phantom{-}\frac{1889}{16406}e^{13} - \frac{50499}{16406}e^{11} + \frac{250906}{8203}e^{9} - \frac{2250477}{16406}e^{7} + \frac{4299797}{16406}e^{5} - \frac{2363203}{16406}e^{3} + \frac{135283}{8203}e$
37 $[37, 37, -2w^{2} + 3w + 7]$ $\phantom{-}\frac{463}{8203}e^{13} - \frac{12156}{8203}e^{11} + \frac{118701}{8203}e^{9} - \frac{528167}{8203}e^{7} + \frac{1050520}{8203}e^{5} - \frac{788238}{8203}e^{3} + \frac{285305}{8203}e$
41 $[41, 41, w^{2} - 2]$ $-\frac{991}{8203}e^{13} + \frac{26054}{8203}e^{11} - \frac{253145}{8203}e^{9} + \frac{1094021}{8203}e^{7} - \frac{1919976}{8203}e^{5} + \frac{705203}{8203}e^{3} - \frac{612}{8203}e$
59 $[59, 59, 2w^{2} - 13]$ $-\frac{59}{631}e^{12} + \frac{1455}{631}e^{10} - \frac{13154}{631}e^{8} + \frac{52381}{631}e^{6} - \frac{83885}{631}e^{4} + \frac{28064}{631}e^{2} + \frac{720}{631}$
61 $[61, 61, w^{2} + w - 10]$ $-\frac{90}{631}e^{12} + \frac{2412}{631}e^{10} - \frac{24322}{631}e^{8} + \frac{112758}{631}e^{6} - \frac{230118}{631}e^{4} + \frac{150272}{631}e^{2} - \frac{20976}{631}$
67 $[67, 67, 2w^{2} - w - 11]$ $-\frac{1142}{8203}e^{13} + \frac{31489}{8203}e^{11} - \frac{327451}{8203}e^{9} + \frac{1582382}{8203}e^{7} - \frac{3499999}{8203}e^{5} + \frac{2896375}{8203}e^{3} - \frac{669287}{8203}e$
73 $[73, 73, -w^{2} - 1]$ $\phantom{-}\frac{139}{631}e^{12} - \frac{3599}{631}e^{10} + \frac{34423}{631}e^{8} - \frac{146721}{631}e^{6} + \frac{257305}{631}e^{4} - \frac{107303}{631}e^{2} + \frac{9512}{631}$
83 $[83, 83, w^{2} - w - 10]$ $\phantom{-}\frac{159}{631}e^{12} - \frac{4135}{631}e^{10} + \frac{39898}{631}e^{8} - \frac{173461}{631}e^{6} + \frac{321483}{631}e^{4} - \frac{174280}{631}e^{2} + \frac{22166}{631}$
89 $[89, 89, -w^{2} + 4w - 2]$ $-\frac{15}{631}e^{12} + \frac{402}{631}e^{10} - \frac{4264}{631}e^{8} + \frac{21948}{631}e^{6} - \frac{52235}{631}e^{4} + \frac{44396}{631}e^{2} - \frac{9806}{631}$
97 $[97, 97, w^{2} - 2w - 7]$ $-\frac{215}{16406}e^{13} + \frac{5131}{16406}e^{11} - \frac{21935}{8203}e^{9} + \frac{158731}{16406}e^{7} - \frac{206883}{16406}e^{5} - \frac{9591}{16406}e^{3} + \frac{16381}{8203}e$
97 $[97, 97, -w^{2} - 4w - 5]$ $\phantom{-}\frac{110}{631}e^{12} - \frac{2948}{631}e^{10} + \frac{29166}{631}e^{8} - \frac{128771}{631}e^{6} + \frac{236244}{631}e^{4} - \frac{111241}{631}e^{2} + \frac{19748}{631}$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
8 $[8, 2, 2]$ $-1$