Properties

Base field 3.3.1101.1
Weight [2, 2, 2]
Level norm 16
Level $[16, 4, 2w - 4]$
Label 3.3.1101.1-16.1-d
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.1101.1

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 9x + 12\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[16, 4, 2w - 4]$
Label 3.3.1101.1-16.1-d
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 6

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} \) \(\mathstrut +\mathstrut 3x \) \(\mathstrut -\mathstrut 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w - 2]$ $\phantom{-}0$
3 $[3, 3, -w + 3]$ $\phantom{-}e$
3 $[3, 3, w - 1]$ $-2$
4 $[4, 2, w^{2} + w - 7]$ $\phantom{-}1$
19 $[19, 19, w + 1]$ $\phantom{-}2$
23 $[23, 23, w^{2} - 2w - 1]$ $\phantom{-}3e + 3$
31 $[31, 31, -2w^{2} + 19]$ $-3e - 7$
31 $[31, 31, -w^{2} + 5]$ $\phantom{-}3e + 2$
31 $[31, 31, -3w + 5]$ $\phantom{-}2$
41 $[41, 41, w^{2} + 2w - 7]$ $-3e - 6$
43 $[43, 43, w^{2} - 11]$ $\phantom{-}3e + 2$
47 $[47, 47, 3w - 7]$ $\phantom{-}3e - 3$
53 $[53, 53, -3w^{2} - 6w + 11]$ $-6e - 6$
59 $[59, 59, 2w - 1]$ $-12$
67 $[67, 67, 2w^{2} + w - 19]$ $-10$
67 $[67, 67, 3w^{2} + 2w - 25]$ $-3e - 1$
67 $[67, 67, w - 5]$ $\phantom{-}3e + 11$
73 $[73, 73, -4w^{2} - 3w + 29]$ $-3e - 10$
73 $[73, 73, 2w^{2} - w - 11]$ $\phantom{-}2$
73 $[73, 73, w^{2} + 2w - 11]$ $-6e - 4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w - 2]$ $-1$
4 $[4, 2, w^{2} + w - 7]$ $-1$