Properties

Base field \(\Q(\sqrt{93}) \)
Weight [2, 2]
Level norm 124
Level $[124, 62, 6w - 34]$
Label 2.2.93.1-124.1-c
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{93}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 23\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[124, 62, 6w - 34]$
Label 2.2.93.1-124.1-c
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 134

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 5]$ $\phantom{-}0$
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, w - 6]$ $\phantom{-}0$
7 $[7, 7, -w - 5]$ $\phantom{-}0$
11 $[11, 11, -w - 3]$ $\phantom{-}0$
11 $[11, 11, w - 4]$ $\phantom{-}0$
17 $[17, 17, w + 2]$ $-6$
17 $[17, 17, w - 3]$ $-6$
19 $[19, 19, w + 6]$ $\phantom{-}4$
19 $[19, 19, -w + 7]$ $\phantom{-}4$
23 $[23, 23, w]$ $\phantom{-}8$
23 $[23, 23, w - 1]$ $\phantom{-}8$
25 $[25, 5, -5]$ $-6$
29 $[29, 29, -2w + 9]$ $\phantom{-}2$
29 $[29, 29, 2w + 7]$ $\phantom{-}2$
31 $[31, 31, 3w - 17]$ $-1$
53 $[53, 53, 3w - 14]$ $-6$
53 $[53, 53, -3w - 11]$ $-6$
67 $[67, 67, -w - 9]$ $-12$
67 $[67, 67, w - 10]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
31 $[31, 31, 3w - 17]$ $1$