Properties

Base field \(\Q(\sqrt{23}) \)
Weight [2, 2]
Level norm 121
Level $[121, 11, 11]$
Label 2.2.92.1-121.1-a
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{23}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 23\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[121, 11, 11]$
Label 2.2.92.1-121.1-a
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 182

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 5]$ $-2$
7 $[7, 7, -w + 4]$ $-2$
7 $[7, 7, w + 4]$ $-2$
9 $[9, 3, 3]$ $-5$
11 $[11, 11, -2w + 9]$ $\phantom{-}1$
11 $[11, 11, -2w - 9]$ $\phantom{-}1$
13 $[13, 13, w + 6]$ $\phantom{-}4$
13 $[13, 13, -w + 6]$ $\phantom{-}4$
19 $[19, 19, -w - 2]$ $\phantom{-}0$
19 $[19, 19, w - 2]$ $\phantom{-}0$
23 $[23, 23, -w]$ $-1$
25 $[25, 5, -5]$ $-9$
29 $[29, 29, 7w + 34]$ $\phantom{-}0$
29 $[29, 29, 2w + 11]$ $\phantom{-}0$
41 $[41, 41, -w - 8]$ $-8$
41 $[41, 41, w - 8]$ $-8$
43 $[43, 43, 2w - 7]$ $-6$
43 $[43, 43, -2w - 7]$ $-6$
67 $[67, 67, 2w - 5]$ $-7$
67 $[67, 67, -2w - 5]$ $-7$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, -2w + 9]$ $-1$
11 $[11, 11, -2w - 9]$ $-1$