# Properties

 Base field $$\Q(\sqrt{23})$$ Weight [2, 2] Level norm 121 Level $[121, 11, 11]$ Label 2.2.92.1-121.1-a Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{23})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 23$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[121, 11, 11]$ Label 2.2.92.1-121.1-a Dimension 1 Is CM no Is base change yes Parent newspace dimension 182

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 5]$ $-2$
7 $[7, 7, -w + 4]$ $-2$
7 $[7, 7, w + 4]$ $-2$
9 $[9, 3, 3]$ $-5$
11 $[11, 11, -2w + 9]$ $\phantom{-}1$
11 $[11, 11, -2w - 9]$ $\phantom{-}1$
13 $[13, 13, w + 6]$ $\phantom{-}4$
13 $[13, 13, -w + 6]$ $\phantom{-}4$
19 $[19, 19, -w - 2]$ $\phantom{-}0$
19 $[19, 19, w - 2]$ $\phantom{-}0$
23 $[23, 23, -w]$ $-1$
25 $[25, 5, -5]$ $-9$
29 $[29, 29, 7w + 34]$ $\phantom{-}0$
29 $[29, 29, 2w + 11]$ $\phantom{-}0$
41 $[41, 41, -w - 8]$ $-8$
41 $[41, 41, w - 8]$ $-8$
43 $[43, 43, 2w - 7]$ $-6$
43 $[43, 43, -2w - 7]$ $-6$
67 $[67, 67, 2w - 5]$ $-7$
67 $[67, 67, -2w - 5]$ $-7$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, -2w + 9]$ $-1$
11 $[11, 11, -2w - 9]$ $-1$