# Properties

 Label 2.2.88.1-44.1-b Base field $$\Q(\sqrt{22})$$ Weight $[2, 2]$ Level norm $44$ Level $[44, 22, -14w + 66]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{22})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 22$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[44, 22, -14w + 66]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $18$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3w + 14]$ $\phantom{-}0$
3 $[3, 3, -w + 5]$ $\phantom{-}1$
3 $[3, 3, w + 5]$ $\phantom{-}1$
7 $[7, 7, 2w + 9]$ $\phantom{-}2$
7 $[7, 7, 2w - 9]$ $\phantom{-}2$
11 $[11, 11, -7w + 33]$ $-1$
13 $[13, 13, -w - 3]$ $-4$
13 $[13, 13, -w + 3]$ $-4$
25 $[25, 5, -5]$ $-1$
29 $[29, 29, 3w + 13]$ $\phantom{-}0$
29 $[29, 29, -3w + 13]$ $\phantom{-}0$
59 $[59, 59, -w - 9]$ $\phantom{-}3$
59 $[59, 59, w - 9]$ $\phantom{-}3$
61 $[61, 61, 11w - 51]$ $-4$
61 $[61, 61, 25w - 117]$ $-4$
67 $[67, 67, 9w - 43]$ $-1$
67 $[67, 67, -9w - 43]$ $-1$
79 $[79, 79, 2w - 3]$ $\phantom{-}2$
79 $[79, 79, -2w - 3]$ $\phantom{-}2$
89 $[89, 89, 4w - 21]$ $-9$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -3w + 14]$ $-1$
$11$ $[11, 11, -7w + 33]$ $1$