# Properties

 Base field $$\Q(\sqrt{85})$$ Weight [2, 2] Level norm 9 Level $[9, 9, w + 3]$ Label 2.2.85.1-9.2-f Dimension 4 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{85})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 21$$; narrow class number $$2$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[9, 9, w + 3]$ Label 2.2.85.1-9.2-f Dimension 4 Is CM no Is base change no Parent newspace dimension 12

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{4} + 6x^{2} + 2$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}0$
3 $[3, 3, w + 2]$ $\phantom{-}e$
4 $[4, 2, 2]$ $-e^{2} - 3$
5 $[5, 5, w + 2]$ $\phantom{-}e^{3} + 4e$
7 $[7, 7, w]$ $\phantom{-}e^{3} + 5e$
7 $[7, 7, w + 6]$ $-e^{3} - 5e$
17 $[17, 17, w + 8]$ $-2e^{3} - 14e$
19 $[19, 19, w + 1]$ $\phantom{-}2$
19 $[19, 19, w - 2]$ $\phantom{-}2$
23 $[23, 23, w + 9]$ $-2e^{3} - 11e$
23 $[23, 23, w + 13]$ $-2e^{3} - 11e$
37 $[37, 37, w + 11]$ $\phantom{-}2e^{3} + 10e$
37 $[37, 37, w + 25]$ $-2e^{3} - 10e$
59 $[59, 59, 3w + 10]$ $\phantom{-}6$
59 $[59, 59, 3w - 13]$ $-6$
73 $[73, 73, w + 15]$ $-e^{3} - 2e$
73 $[73, 73, w + 57]$ $\phantom{-}e^{3} + 2e$
89 $[89, 89, -w - 10]$ $-3e^{2} - 12$
89 $[89, 89, w - 11]$ $\phantom{-}3e^{2} + 12$
97 $[97, 97, w + 22]$ $-2e^{3} - 16e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $1$