Properties

Base field \(\Q(\sqrt{85}) \)
Weight [2, 2]
Level norm 153
Level $[153, 51, 3w + 24]$
Label 2.2.85.1-153.1-c
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{85}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 21\); narrow class number \(2\) and class number \(2\).

Form

Weight [2, 2]
Level $[153, 51, 3w + 24]$
Label 2.2.85.1-153.1-c
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 186

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}1$
3 $[3, 3, w + 2]$ $\phantom{-}1$
4 $[4, 2, 2]$ $-4$
5 $[5, 5, w + 2]$ $\phantom{-}3$
7 $[7, 7, w]$ $-4$
7 $[7, 7, w + 6]$ $-4$
17 $[17, 17, w + 8]$ $-1$
19 $[19, 19, w + 1]$ $-1$
19 $[19, 19, w - 2]$ $-1$
23 $[23, 23, w + 9]$ $\phantom{-}9$
23 $[23, 23, w + 13]$ $\phantom{-}9$
37 $[37, 37, w + 11]$ $-4$
37 $[37, 37, w + 25]$ $-4$
59 $[59, 59, 3w + 10]$ $\phantom{-}6$
59 $[59, 59, 3w - 13]$ $\phantom{-}6$
73 $[73, 73, w + 15]$ $\phantom{-}2$
73 $[73, 73, w + 57]$ $\phantom{-}2$
89 $[89, 89, -w - 10]$ $\phantom{-}0$
89 $[89, 89, w - 11]$ $\phantom{-}0$
97 $[97, 97, w + 22]$ $-16$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $-1$
3 $[3, 3, w + 2]$ $-1$
17 $[17, 17, w + 8]$ $1$