# Properties

 Base field $$\Q(\sqrt{85})$$ Weight [2, 2] Level norm 12 Level $[12, 6, 2w]$ Label 2.2.85.1-12.1-d Dimension 3 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{85})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 21$$; narrow class number $$2$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[12, 6, 2w]$ Label 2.2.85.1-12.1-d Dimension 3 Is CM no Is base change no Parent newspace dimension 18

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{3}$$ $$\mathstrut -\mathstrut 8x$$ $$\mathstrut -\mathstrut 4$$
Norm Prime Eigenvalue
3 $[3, 3, w]$ $-1$
3 $[3, 3, w + 2]$ $\phantom{-}e$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, w + 2]$ $-\frac{1}{2}e^{2} + 2$
7 $[7, 7, w]$ $-\frac{1}{2}e^{2}$
7 $[7, 7, w + 6]$ $\phantom{-}\frac{1}{2}e^{2} - e - 2$
17 $[17, 17, w + 8]$ $-e - 4$
19 $[19, 19, w + 1]$ $-e^{2} + e + 4$
19 $[19, 19, w - 2]$ $-e - 2$
23 $[23, 23, w + 9]$ $\phantom{-}\frac{1}{2}e^{2} - 2e - 4$
23 $[23, 23, w + 13]$ $\phantom{-}\frac{3}{2}e^{2} + e - 8$
37 $[37, 37, w + 11]$ $\phantom{-}\frac{3}{2}e^{2} - e - 12$
37 $[37, 37, w + 25]$ $-\frac{1}{2}e^{2} - e + 2$
59 $[59, 59, 3w + 10]$ $\phantom{-}e^{2} - 4e - 8$
59 $[59, 59, 3w - 13]$ $-e^{2} + 4$
73 $[73, 73, w + 15]$ $-e^{2} + 2e + 4$
73 $[73, 73, w + 57]$ $\phantom{-}4e - 4$
89 $[89, 89, -w - 10]$ $-2e^{2} + 5e + 16$
89 $[89, 89, w - 11]$ $-2e^{2} + 3e + 8$
97 $[97, 97, w + 22]$ $-2e^{2} + 5e + 8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $1$
4 $[4, 2, 2]$ $-1$