# Properties

 Base field $$\Q(\sqrt{2})$$ Weight [2, 2] Level norm 89 Level $[89, 89, -4w - 11]$ Label 2.2.8.1-89.1-b Dimension 1 CM no Base change no

# Related objects

## Base field $$\Q(\sqrt{2})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 2$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[89, 89, -4w - 11]$ Label 2.2.8.1-89.1-b Dimension 1 Is CM no Is base change no Parent newspace dimension 4

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}0$
7 $[7, 7, -2w + 1]$ $-1$
7 $[7, 7, -2w - 1]$ $\phantom{-}2$
9 $[9, 3, 3]$ $\phantom{-}4$
17 $[17, 17, 3w + 1]$ $\phantom{-}3$
17 $[17, 17, 3w - 1]$ $\phantom{-}3$
23 $[23, 23, w + 5]$ $-3$
23 $[23, 23, -w + 5]$ $-6$
25 $[25, 5, 5]$ $-7$
31 $[31, 31, 4w + 1]$ $-10$
31 $[31, 31, -4w + 1]$ $\phantom{-}8$
41 $[41, 41, 2w - 7]$ $-9$
41 $[41, 41, -2w - 7]$ $\phantom{-}6$
47 $[47, 47, -w - 7]$ $\phantom{-}0$
47 $[47, 47, w - 7]$ $-3$
71 $[71, 71, -6w - 1]$ $\phantom{-}15$
71 $[71, 71, 6w - 1]$ $\phantom{-}0$
73 $[73, 73, -7w - 5]$ $\phantom{-}8$
73 $[73, 73, 7w - 5]$ $\phantom{-}2$
79 $[79, 79, -w - 9]$ $-1$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
89 $[89, 89, -4w - 11]$ $1$