Properties

Base field \(\Q(\sqrt{2}) \)
Weight [2, 2]
Level norm 62
Level $[62,62,w - 8]$
Label 2.2.8.1-62.2-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{2}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 2\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[62,62,w - 8]$
Label 2.2.8.1-62.2-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 1

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}1$
7 $[7, 7, -2w + 1]$ $-2$
7 $[7, 7, -2w - 1]$ $-2$
9 $[9, 3, 3]$ $\phantom{-}0$
17 $[17, 17, 3w + 1]$ $-2$
17 $[17, 17, 3w - 1]$ $-2$
23 $[23, 23, w + 5]$ $-6$
23 $[23, 23, -w + 5]$ $\phantom{-}4$
25 $[25, 5, 5]$ $\phantom{-}6$
31 $[31, 31, 4w + 1]$ $-8$
31 $[31, 31, -4w + 1]$ $\phantom{-}1$
41 $[41, 41, 2w - 7]$ $\phantom{-}12$
41 $[41, 41, -2w - 7]$ $-8$
47 $[47, 47, -w - 7]$ $\phantom{-}8$
47 $[47, 47, w - 7]$ $\phantom{-}8$
71 $[71, 71, -6w - 1]$ $\phantom{-}12$
71 $[71, 71, 6w - 1]$ $-8$
73 $[73, 73, -7w - 5]$ $\phantom{-}4$
73 $[73, 73, 7w - 5]$ $\phantom{-}14$
79 $[79, 79, -w - 9]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,w]$ $-1$
31 $[31,31,-4w + 1]$ $-1$