Properties

Label 2.2.8.1-256.1-c
Base field \(\Q(\sqrt{2}) \)
Weight $[2, 2]$
Level norm $256$
Level $[256, 16, 16]$
Dimension $1$
CM yes
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{2}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 2\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[256, 16, 16]$
Dimension: $1$
CM: yes
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}0$
7 $[7, 7, -2w + 1]$ $\phantom{-}0$
7 $[7, 7, -2w - 1]$ $\phantom{-}0$
9 $[9, 3, 3]$ $-2$
17 $[17, 17, 3w + 1]$ $\phantom{-}6$
17 $[17, 17, 3w - 1]$ $\phantom{-}6$
23 $[23, 23, w + 5]$ $\phantom{-}0$
23 $[23, 23, -w + 5]$ $\phantom{-}0$
25 $[25, 5, 5]$ $\phantom{-}10$
31 $[31, 31, 4w + 1]$ $\phantom{-}0$
31 $[31, 31, -4w + 1]$ $\phantom{-}0$
41 $[41, 41, 2w - 7]$ $-6$
41 $[41, 41, -2w - 7]$ $-6$
47 $[47, 47, -w - 7]$ $\phantom{-}0$
47 $[47, 47, w - 7]$ $\phantom{-}0$
71 $[71, 71, -6w - 1]$ $\phantom{-}0$
71 $[71, 71, 6w - 1]$ $\phantom{-}0$
73 $[73, 73, -7w - 5]$ $-2$
73 $[73, 73, 7w - 5]$ $-2$
79 $[79, 79, -w - 9]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w]$ $1$