# Properties

 Base field $$\Q(\sqrt{77})$$ Weight [2, 2] Level norm 121 Level $[121, 11, 11]$ Label 2.2.77.1-121.1-e Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{77})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 19$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[121, 11, 11]$ Label 2.2.77.1-121.1-e Dimension 1 Is CM no Is base change yes Parent newspace dimension 111

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-3$
7 $[7, 7, -w - 3]$ $\phantom{-}2$
9 $[9, 3, 3]$ $-2$
11 $[11, 11, w + 5]$ $\phantom{-}0$
13 $[13, 13, w + 2]$ $-1$
13 $[13, 13, w - 3]$ $-1$
17 $[17, 17, w + 1]$ $\phantom{-}5$
17 $[17, 17, -w + 2]$ $\phantom{-}5$
19 $[19, 19, w]$ $-6$
19 $[19, 19, w - 1]$ $-6$
23 $[23, 23, w + 6]$ $\phantom{-}2$
23 $[23, 23, -w + 7]$ $\phantom{-}2$
25 $[25, 5, -5]$ $-9$
37 $[37, 37, -w - 7]$ $-3$
37 $[37, 37, w - 8]$ $-3$
41 $[41, 41, 2w - 7]$ $\phantom{-}5$
41 $[41, 41, -2w - 5]$ $\phantom{-}5$
53 $[53, 53, -w - 8]$ $\phantom{-}9$
53 $[53, 53, w - 9]$ $\phantom{-}9$
61 $[61, 61, 2w - 5]$ $-6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, w + 5]$ $-1$