Properties

Base field \(\Q(\sqrt{73}) \)
Weight [2, 2]
Level norm 121
Level $[121, 11, -11]$
Label 2.2.73.1-121.1-b
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{73}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 18\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[121, 11, -11]$
Label 2.2.73.1-121.1-b
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 221

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 4]$ $-2$
2 $[2, 2, w - 5]$ $-2$
3 $[3, 3, -4w - 15]$ $-1$
3 $[3, 3, -4w + 19]$ $-1$
19 $[19, 19, -6w - 23]$ $\phantom{-}0$
19 $[19, 19, 6w - 29]$ $\phantom{-}0$
23 $[23, 23, 14w - 67]$ $-1$
23 $[23, 23, -14w - 53]$ $-1$
25 $[25, 5, -5]$ $-9$
37 $[37, 37, 2w - 7]$ $\phantom{-}3$
37 $[37, 37, -2w - 5]$ $\phantom{-}3$
41 $[41, 41, 30w - 143]$ $-8$
41 $[41, 41, 40w - 191]$ $-8$
49 $[49, 7, -7]$ $-10$
61 $[61, 61, 10w + 37]$ $\phantom{-}12$
61 $[61, 61, -10w + 47]$ $\phantom{-}12$
67 $[67, 67, -4w - 13]$ $-7$
67 $[67, 67, 4w - 17]$ $-7$
71 $[71, 71, 2w - 13]$ $-3$
71 $[71, 71, -2w - 11]$ $-3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
121 $[121, 11, -11]$ $-1$