Properties

Base field \(\Q(\sqrt{69}) \)
Weight [2, 2]
Level norm 121
Level $[121, 11, 11]$
Label 2.2.69.1-121.1-b
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{69}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 17\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[121, 11, 11]$
Label 2.2.69.1-121.1-b
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 114

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w - 5]$ $-1$
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, -w + 4]$ $\phantom{-}1$
5 $[5, 5, -w - 3]$ $\phantom{-}1$
11 $[11, 11, w + 2]$ $\phantom{-}1$
11 $[11, 11, -w + 3]$ $\phantom{-}1$
13 $[13, 13, w + 5]$ $\phantom{-}4$
13 $[13, 13, -w + 6]$ $\phantom{-}4$
17 $[17, 17, -w]$ $-2$
17 $[17, 17, w - 1]$ $-2$
23 $[23, 23, -3w + 13]$ $-1$
31 $[31, 31, 2w - 11]$ $\phantom{-}7$
31 $[31, 31, -5w + 24]$ $\phantom{-}7$
49 $[49, 7, -7]$ $-10$
53 $[53, 53, 2w - 5]$ $-6$
53 $[53, 53, -2w - 3]$ $-6$
73 $[73, 73, -w - 9]$ $\phantom{-}4$
73 $[73, 73, w - 10]$ $\phantom{-}4$
83 $[83, 83, -3w - 7]$ $-6$
83 $[83, 83, 3w - 10]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, w + 2]$ $-1$
11 $[11, 11, -w + 3]$ $-1$