# Properties

 Base field $$\Q(\sqrt{61})$$ Weight [2, 2] Level norm 121 Level $[121, 11, -11]$ Label 2.2.61.1-121.1-a Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{61})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 15$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[121, 11, -11]$ Label 2.2.61.1-121.1-a Dimension 1 Is CM no Is base change yes Parent newspace dimension 111

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w - 3]$ $-1$
3 $[3, 3, -w + 4]$ $-1$
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, w - 5]$ $\phantom{-}1$
5 $[5, 5, -w - 4]$ $\phantom{-}1$
13 $[13, 13, -w - 1]$ $\phantom{-}4$
13 $[13, 13, w - 2]$ $\phantom{-}4$
19 $[19, 19, 3w - 14]$ $\phantom{-}0$
19 $[19, 19, -3w - 11]$ $\phantom{-}0$
41 $[41, 41, -w - 7]$ $-8$
41 $[41, 41, w - 8]$ $-8$
47 $[47, 47, 3w - 11]$ $\phantom{-}8$
47 $[47, 47, -3w - 8]$ $\phantom{-}8$
49 $[49, 7, -7]$ $-10$
61 $[61, 61, 2w - 1]$ $\phantom{-}12$
73 $[73, 73, -3w + 16]$ $\phantom{-}4$
73 $[73, 73, 3w + 13]$ $\phantom{-}4$
83 $[83, 83, 2w - 13]$ $-6$
83 $[83, 83, -2w - 11]$ $-6$
97 $[97, 97, 7w + 22]$ $-7$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
121 $[121, 11, -11]$ $-1$