# Properties

 Base field $$\Q(\sqrt{57})$$ Weight [2, 2] Level norm 121 Level $[121, 11, -11]$ Label 2.2.57.1-121.1-d Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{57})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 14$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[121, 11, -11]$ Label 2.2.57.1-121.1-d Dimension 1 Is CM no Is base change yes Parent newspace dimension 142

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 4]$ $-2$
2 $[2, 2, -w - 3]$ $-2$
3 $[3, 3, -4w - 13]$ $-1$
7 $[7, 7, -2w - 7]$ $-2$
7 $[7, 7, -2w + 9]$ $-2$
19 $[19, 19, 10w + 33]$ $\phantom{-}0$
25 $[25, 5, 5]$ $-9$
29 $[29, 29, -6w - 19]$ $\phantom{-}0$
29 $[29, 29, -6w + 25]$ $\phantom{-}0$
41 $[41, 41, 2w - 5]$ $-8$
41 $[41, 41, -2w - 3]$ $-8$
43 $[43, 43, 2w - 11]$ $-6$
43 $[43, 43, 2w + 9]$ $-6$
53 $[53, 53, 2w - 3]$ $-6$
53 $[53, 53, -2w - 1]$ $-6$
59 $[59, 59, 4w - 15]$ $\phantom{-}5$
59 $[59, 59, 4w + 11]$ $\phantom{-}5$
61 $[61, 61, -4w - 15]$ $\phantom{-}12$
61 $[61, 61, -4w + 19]$ $\phantom{-}12$
71 $[71, 71, 8w + 25]$ $-3$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
121 $[121, 11, -11]$ $-1$