Properties

Base field \(\Q(\sqrt{53}) \)
Weight [2, 2]
Level norm 196
Level $[196, 14, 14]$
Label 2.2.53.1-196.1-f
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{53}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 13\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[196, 14, 14]$
Label 2.2.53.1-196.1-f
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 61

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, w + 2]$ $\phantom{-}1$
7 $[7, 7, w - 3]$ $\phantom{-}1$
9 $[9, 3, 3]$ $-2$
11 $[11, 11, w + 1]$ $\phantom{-}0$
11 $[11, 11, w - 2]$ $\phantom{-}0$
13 $[13, 13, w]$ $-4$
13 $[13, 13, w - 1]$ $-4$
17 $[17, 17, -w - 5]$ $\phantom{-}6$
17 $[17, 17, w - 6]$ $\phantom{-}6$
25 $[25, 5, -5]$ $-10$
29 $[29, 29, -w - 6]$ $-6$
29 $[29, 29, w - 7]$ $-6$
37 $[37, 37, 2w - 5]$ $\phantom{-}2$
37 $[37, 37, -2w - 3]$ $\phantom{-}2$
43 $[43, 43, -w - 7]$ $\phantom{-}8$
43 $[43, 43, w - 8]$ $\phantom{-}8$
47 $[47, 47, 3w + 7]$ $-12$
47 $[47, 47, 3w - 10]$ $-12$
53 $[53, 53, 2w - 1]$ $\phantom{-}6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
7 $[7, 7, w + 2]$ $-1$
7 $[7, 7, w - 3]$ $-1$