Properties

Label 2.2.476.1-1.1-e
Base field \(\Q(\sqrt{119}) \)
Weight $[2, 2]$
Level norm $1$
Level $[1, 1, 1]$
Dimension $10$
CM yes
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{119}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 119\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[1, 1, 1]$
Dimension: $10$
CM: yes
Base change: yes
Newspace dimension: $64$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{10} - 50x^{8} + 875x^{6} - 6250x^{4} + 15625x^{2} - 11492\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 11]$ $\phantom{-}\frac{1}{312}e^{8} - \frac{5}{39}e^{6} + \frac{125}{78}e^{4} - \frac{2161}{312}e^{2} + \frac{55}{6}$
5 $[5, 5, w + 2]$ $\phantom{-}e$
5 $[5, 5, w + 3]$ $\phantom{-}e$
7 $[7, 7, w]$ $\phantom{-}0$
9 $[9, 3, 3]$ $-\frac{1}{39}e^{6} + \frac{38}{39}e^{4} - \frac{385}{39}e^{2} + \frac{50}{3}$
11 $[11, 11, w + 3]$ $\phantom{-}0$
11 $[11, 11, w + 8]$ $\phantom{-}0$
17 $[17, 17, w]$ $-\frac{1}{13}e^{5} + \frac{25}{13}e^{3} - \frac{125}{13}e$
19 $[19, 19, w - 10]$ $\phantom{-}0$
19 $[19, 19, -w - 10]$ $\phantom{-}0$
23 $[23, 23, w + 2]$ $\phantom{-}0$
23 $[23, 23, w + 21]$ $\phantom{-}0$
41 $[41, 41, w + 18]$ $\phantom{-}\frac{1}{26}e^{7} - \frac{35}{26}e^{5} + \frac{323}{26}e^{3} - \frac{235}{13}e$
41 $[41, 41, w + 23]$ $\phantom{-}\frac{1}{26}e^{7} - \frac{35}{26}e^{5} + \frac{323}{26}e^{3} - \frac{235}{13}e$
47 $[47, 47, -3w + 32]$ $\phantom{-}0$
47 $[47, 47, 8w - 87]$ $\phantom{-}0$
53 $[53, 53, -2w + 23]$ $\phantom{-}\frac{7}{78}e^{6} - \frac{227}{78}e^{4} + \frac{1915}{78}e^{2} - \frac{100}{3}$
53 $[53, 53, -13w + 142]$ $\phantom{-}\frac{7}{78}e^{6} - \frac{227}{78}e^{4} + \frac{1915}{78}e^{2} - \frac{100}{3}$
59 $[59, 59, -5w + 54]$ $\phantom{-}0$
59 $[59, 59, 6w - 65]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is \((1)\).