Properties

Base field \(\Q(\sqrt{114}) \)
Weight [2, 2]
Level norm 4
Level $[4, 2, 2]$
Label 2.2.456.1-4.1-k
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{114}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 114\); narrow class number \(4\) and class number \(2\).

Form

Weight [2, 2]
Level $[4, 2, 2]$
Label 2.2.456.1-4.1-k
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 42

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut -\mathstrut 14x^{2} \) \(\mathstrut +\mathstrut 9\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -3w - 32]$ $\phantom{-}0$
3 $[3, 3, w]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{11}{6}e$
5 $[5, 5, w + 2]$ $\phantom{-}e$
5 $[5, 5, w + 3]$ $-\frac{1}{3}e^{3} + \frac{14}{3}e$
7 $[7, 7, -w + 11]$ $-\frac{1}{2}e^{2} + \frac{5}{2}$
7 $[7, 7, w + 11]$ $\phantom{-}\frac{1}{2}e^{2} - \frac{9}{2}$
11 $[11, 11, w + 2]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{17}{6}e$
11 $[11, 11, w + 9]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{17}{6}e$
13 $[13, 13, w + 6]$ $\phantom{-}\frac{1}{6}e^{3} - \frac{23}{6}e$
13 $[13, 13, w + 7]$ $-\frac{1}{2}e^{3} + \frac{15}{2}e$
19 $[19, 19, w]$ $\phantom{-}\frac{1}{3}e^{3} - \frac{11}{3}e$
37 $[37, 37, w + 15]$ $\phantom{-}\frac{1}{2}e^{3} - \frac{15}{2}e$
37 $[37, 37, w + 22]$ $-\frac{1}{6}e^{3} + \frac{23}{6}e$
41 $[41, 41, 37w + 395]$ $-\frac{1}{2}e^{2} - \frac{9}{2}$
41 $[41, 41, 5w + 53]$ $-\frac{1}{2}e^{2} + \frac{23}{2}$
67 $[67, 67, w + 28]$ $\phantom{-}0$
67 $[67, 67, w + 39]$ $\phantom{-}0$
71 $[71, 71, 40w + 427]$ $-\frac{1}{2}e^{2} + \frac{3}{2}$
71 $[71, 71, 8w + 85]$ $-\frac{1}{2}e^{2} + \frac{11}{2}$
73 $[73, 73, -2w + 23]$ $-e^{2} + 10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -3w - 32]$ $-1$