# Properties

 Base field $$\Q(\sqrt{114})$$ Weight [2, 2] Level norm 3 Level $[3, 3, w]$ Label 2.2.456.1-3.1-a Dimension 2 CM no Base change yes

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{114})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 114$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[3, 3, w]$ Label 2.2.456.1-3.1-a Dimension 2 Is CM no Is base change yes Parent newspace dimension 72

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut +\mathstrut 4$$
Norm Prime Eigenvalue
2 $[2, 2, -3w - 32]$ $-2$
3 $[3, 3, w]$ $-\frac{1}{2}e$
5 $[5, 5, w + 2]$ $\phantom{-}e$
5 $[5, 5, w + 3]$ $\phantom{-}e$
7 $[7, 7, -w + 11]$ $-2$
7 $[7, 7, w + 11]$ $-2$
11 $[11, 11, w + 2]$ $\phantom{-}0$
11 $[11, 11, w + 9]$ $\phantom{-}0$
13 $[13, 13, w + 6]$ $-2e$
13 $[13, 13, w + 7]$ $-2e$
19 $[19, 19, w]$ $\phantom{-}2e$
37 $[37, 37, w + 15]$ $\phantom{-}4e$
37 $[37, 37, w + 22]$ $\phantom{-}4e$
41 $[41, 41, 37w + 395]$ $\phantom{-}2$
41 $[41, 41, 5w + 53]$ $\phantom{-}2$
67 $[67, 67, w + 28]$ $-6e$
67 $[67, 67, w + 39]$ $-6e$
71 $[71, 71, 40w + 427]$ $\phantom{-}12$
71 $[71, 71, 8w + 85]$ $\phantom{-}12$
73 $[73, 73, -2w + 23]$ $-6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $\frac{1}{2}e$