Properties

Base field \(\Q(\sqrt{11}) \)
Weight [2, 2]
Level norm 121
Level $[121, 11, 11]$
Label 2.2.44.1-121.1-b
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{11}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 11\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[121, 11, 11]$
Label 2.2.44.1-121.1-b
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 66

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 3]$ $-1$
5 $[5, 5, w - 4]$ $\phantom{-}1$
5 $[5, 5, -w - 4]$ $\phantom{-}1$
7 $[7, 7, w + 2]$ $\phantom{-}2$
7 $[7, 7, w - 2]$ $\phantom{-}2$
9 $[9, 3, 3]$ $-2$
11 $[11, 11, -w]$ $\phantom{-}0$
19 $[19, 19, 2w - 5]$ $-6$
19 $[19, 19, -2w - 5]$ $-6$
37 $[37, 37, 2w - 9]$ $-3$
37 $[37, 37, -2w - 9]$ $-3$
43 $[43, 43, 2w - 1]$ $\phantom{-}0$
43 $[43, 43, -2w - 1]$ $\phantom{-}0$
53 $[53, 53, -w - 8]$ $\phantom{-}9$
53 $[53, 53, w - 8]$ $\phantom{-}9$
79 $[79, 79, 5w - 14]$ $\phantom{-}10$
79 $[79, 79, 8w - 25]$ $\phantom{-}10$
83 $[83, 83, -3w - 4]$ $-6$
83 $[83, 83, 3w - 4]$ $-6$
89 $[89, 89, -w - 10]$ $-9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
11 $[11, 11, -w]$ $-1$