Properties

Base field \(\Q(\sqrt{41}) \)
Weight [2, 2]
Level norm 121
Level $[121, 11, -11]$
Label 2.2.41.1-121.1-a
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{41}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 10\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[121, 11, -11]$
Label 2.2.41.1-121.1-a
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 81

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 4]$ $-2$
2 $[2, 2, -w - 3]$ $-2$
5 $[5, 5, -2w - 5]$ $\phantom{-}1$
5 $[5, 5, -2w + 7]$ $\phantom{-}1$
9 $[9, 3, 3]$ $-5$
23 $[23, 23, 2w - 9]$ $-1$
23 $[23, 23, -2w - 7]$ $-1$
31 $[31, 31, -6w - 17]$ $\phantom{-}7$
31 $[31, 31, 6w - 23]$ $\phantom{-}7$
37 $[37, 37, 2w - 3]$ $\phantom{-}3$
37 $[37, 37, -2w - 1]$ $\phantom{-}3$
41 $[41, 41, 2w - 1]$ $-8$
43 $[43, 43, -4w - 9]$ $-6$
43 $[43, 43, 4w - 13]$ $-6$
49 $[49, 7, -7]$ $-10$
59 $[59, 59, 2w - 11]$ $\phantom{-}5$
59 $[59, 59, -2w - 9]$ $\phantom{-}5$
61 $[61, 61, -4w + 17]$ $\phantom{-}12$
61 $[61, 61, 4w + 13]$ $\phantom{-}12$
73 $[73, 73, 8w + 23]$ $\phantom{-}4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
121 $[121, 11, -11]$ $-1$