# Properties

 Base field $$\Q(\sqrt{10})$$ Weight [2, 2] Level norm 225 Level $[225, 15, 15]$ Label 2.2.40.1-225.1-j Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{10})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 10$$; narrow class number $$2$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[225, 15, 15]$ Label 2.2.40.1-225.1-j Dimension 1 Is CM no Is base change yes Parent newspace dimension 84

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $-2$
3 $[3, 3, w + 1]$ $\phantom{-}1$
3 $[3, 3, w + 2]$ $\phantom{-}1$
5 $[5, 5, w]$ $\phantom{-}0$
13 $[13, 13, w + 6]$ $-1$
13 $[13, 13, w + 7]$ $-1$
31 $[31, 31, -2w + 3]$ $-3$
31 $[31, 31, 2w + 3]$ $-3$
37 $[37, 37, w + 11]$ $-2$
37 $[37, 37, w + 26]$ $-2$
41 $[41, 41, 3w + 7]$ $-8$
41 $[41, 41, -3w + 7]$ $-8$
43 $[43, 43, w + 15]$ $-1$
43 $[43, 43, w + 28]$ $-1$
49 $[49, 7, -7]$ $-5$
53 $[53, 53, w + 13]$ $\phantom{-}4$
53 $[53, 53, w + 40]$ $\phantom{-}4$
67 $[67, 67, w + 12]$ $\phantom{-}3$
67 $[67, 67, w + 55]$ $\phantom{-}3$
71 $[71, 71, -w - 9]$ $-8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $-1$
3 $[3, 3, w + 2]$ $-1$
5 $[5, 5, w]$ $-1$