# Properties

 Base field $\Q(\sqrt{393})$ Weight [2, 2] Level norm 9 Level $[9, 3, 3]$ Label 2.2.393.1-9.1-c Dimension 1 CM no Base change no

# Related objects

## Base field $\Q(\sqrt{393})$

Generator $w$, with minimal polynomial $x^{2} - x - 98$; narrow class number $2$ and class number $1$.

## Form

 Weight [2, 2] Level $[9, 3, 3]$ Label 2.2.393.1-9.1-c Dimension 1 Is CM no Is base change no Parent newspace dimension 104

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -17w - 160]$ $\phantom{-}2$
2 $[2, 2, -17w + 177]$ $-1$
3 $[3, 3, -842w + 8767]$ $\phantom{-}0$
7 $[7, 7, -2w + 21]$ $\phantom{-}1$
7 $[7, 7, 2w + 19]$ $-2$
13 $[13, 13, -12w - 113]$ $-6$
13 $[13, 13, 12w - 125]$ $\phantom{-}6$
17 $[17, 17, 182w - 1895]$ $\phantom{-}2$
17 $[17, 17, 182w + 1713]$ $\phantom{-}2$
23 $[23, 23, -512w - 4819]$ $-6$
23 $[23, 23, 512w - 5331]$ $\phantom{-}0$
25 $[25, 5, -5]$ $\phantom{-}2$
29 $[29, 29, 22w - 229]$ $\phantom{-}8$
29 $[29, 29, 22w + 207]$ $-1$
43 $[43, 43, 114w + 1073]$ $\phantom{-}1$
43 $[43, 43, 114w - 1187]$ $-2$
47 $[47, 47, 8w - 83]$ $\phantom{-}0$
47 $[47, 47, -8w - 75]$ $\phantom{-}3$
61 $[61, 61, -1172w - 11031]$ $\phantom{-}0$
61 $[61, 61, 1172w - 12203]$ $-6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -842w + 8767]$ $1$