Properties

Base field \(\Q(\sqrt{393}) \)
Weight [2, 2]
Level norm 9
Level $[9, 3, 3]$
Label 2.2.393.1-9.1-b
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{393}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 98\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[9, 3, 3]$
Label 2.2.393.1-9.1-b
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 104

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -17w - 160]$ $-2$
2 $[2, 2, -17w + 177]$ $\phantom{-}1$
3 $[3, 3, -842w + 8767]$ $\phantom{-}0$
7 $[7, 7, -2w + 21]$ $\phantom{-}1$
7 $[7, 7, 2w + 19]$ $-2$
13 $[13, 13, -12w - 113]$ $-6$
13 $[13, 13, 12w - 125]$ $\phantom{-}6$
17 $[17, 17, 182w - 1895]$ $-2$
17 $[17, 17, 182w + 1713]$ $-2$
23 $[23, 23, -512w - 4819]$ $\phantom{-}6$
23 $[23, 23, 512w - 5331]$ $\phantom{-}0$
25 $[25, 5, -5]$ $\phantom{-}2$
29 $[29, 29, 22w - 229]$ $-8$
29 $[29, 29, 22w + 207]$ $\phantom{-}1$
43 $[43, 43, 114w + 1073]$ $\phantom{-}1$
43 $[43, 43, 114w - 1187]$ $-2$
47 $[47, 47, 8w - 83]$ $\phantom{-}0$
47 $[47, 47, -8w - 75]$ $-3$
61 $[61, 61, -1172w - 11031]$ $\phantom{-}0$
61 $[61, 61, 1172w - 12203]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -842w + 8767]$ $1$