Properties

Base field \(\Q(\sqrt{301}) \)
Weight [2, 2]
Level norm 28
Level $[28, 14, -46w - 376]$
Label 2.2.301.1-28.1-b
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{301}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 75\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[28, 14, -46w - 376]$
Label 2.2.301.1-28.1-b
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 186

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w - 9]$ $-2$
3 $[3, 3, w + 8]$ $-2$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, -6w + 55]$ $\phantom{-}0$
5 $[5, 5, -6w - 49]$ $\phantom{-}0$
7 $[7, 7, -23w - 188]$ $\phantom{-}1$
11 $[11, 11, 5w - 46]$ $\phantom{-}0$
11 $[11, 11, -5w - 41]$ $\phantom{-}0$
19 $[19, 19, w + 7]$ $\phantom{-}2$
19 $[19, 19, -w + 8]$ $\phantom{-}2$
23 $[23, 23, 2w - 19]$ $\phantom{-}0$
23 $[23, 23, 2w + 17]$ $\phantom{-}0$
43 $[43, 43, 57w - 523]$ $\phantom{-}8$
53 $[53, 53, 28w - 257]$ $\phantom{-}6$
53 $[53, 53, 28w + 229]$ $\phantom{-}6$
61 $[61, 61, -13w + 119]$ $\phantom{-}8$
61 $[61, 61, 13w + 106]$ $\phantom{-}8$
67 $[67, 67, -9w + 83]$ $-4$
67 $[67, 67, -9w - 74]$ $-4$
73 $[73, 73, -w - 1]$ $\phantom{-}2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
7 $[7, 7, -23w - 188]$ $-1$