Properties

Base field \(\Q(\sqrt{67}) \)
Weight [2, 2]
Level norm 8
Level $[8, 4, -54w + 442]$
Label 2.2.268.1-8.1-a
Dimension 16
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{67}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 67\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[8, 4, -54w + 442]$
Label 2.2.268.1-8.1-a
Dimension 16
Is CM no
Is base change no
Parent newspace dimension 32

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{16} \) \(\mathstrut -\mathstrut 5x^{15} \) \(\mathstrut -\mathstrut 19x^{14} \) \(\mathstrut +\mathstrut 117x^{13} \) \(\mathstrut +\mathstrut 113x^{12} \) \(\mathstrut -\mathstrut 1025x^{11} \) \(\mathstrut -\mathstrut 180x^{10} \) \(\mathstrut +\mathstrut 4236x^{9} \) \(\mathstrut -\mathstrut 211x^{8} \) \(\mathstrut -\mathstrut 8619x^{7} \) \(\mathstrut +\mathstrut 104x^{6} \) \(\mathstrut +\mathstrut 7972x^{5} \) \(\mathstrut +\mathstrut 1364x^{4} \) \(\mathstrut -\mathstrut 2444x^{3} \) \(\mathstrut -\mathstrut 1081x^{2} \) \(\mathstrut -\mathstrut 135x \) \(\mathstrut -\mathstrut 4\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -27w + 221]$ $\phantom{-}0$
3 $[3, 3, -w + 8]$ $...$
3 $[3, 3, -w - 8]$ $\phantom{-}e$
7 $[7, 7, -11w + 90]$ $...$
7 $[7, 7, -11w - 90]$ $...$
11 $[11, 11, 6w - 49]$ $...$
11 $[11, 11, 6w + 49]$ $...$
17 $[17, 17, 4w + 33]$ $...$
17 $[17, 17, -4w + 33]$ $...$
25 $[25, 5, -5]$ $...$
29 $[29, 29, -70w + 573]$ $...$
29 $[29, 29, 151w - 1236]$ $...$
31 $[31, 31, -w - 6]$ $...$
31 $[31, 31, w - 6]$ $...$
37 $[37, 37, -21w - 172]$ $...$
37 $[37, 37, -21w + 172]$ $...$
43 $[43, 43, 2w - 15]$ $...$
43 $[43, 43, 2w + 15]$ $...$
67 $[67, 67, -w]$ $...$
73 $[73, 73, -3w - 26]$ $...$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -27w + 221]$ $1$