Properties

 Base field $\Q(\sqrt{67})$ Weight [2, 2] Level norm 14 Level $[14,14,w + 9]$ Label 2.2.268.1-14.2-d Dimension 1 CM no Base change no

Related objects

Base field $\Q(\sqrt{67})$

Generator $w$, with minimal polynomial $x^{2} - 67$; narrow class number $2$ and class number $1$.

Form

 Weight [2, 2] Level $[14,14,w + 9]$ Label 2.2.268.1-14.2-d Dimension 1 Is CM no Is base change no Parent newspace dimension 68

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -27w + 221]$ $\phantom{-}1$
3 $[3, 3, -w + 8]$ $-1$
3 $[3, 3, -w - 8]$ $\phantom{-}0$
7 $[7, 7, -11w + 90]$ $-1$
7 $[7, 7, -11w - 90]$ $-3$
11 $[11, 11, 6w - 49]$ $-1$
11 $[11, 11, 6w + 49]$ $\phantom{-}4$
17 $[17, 17, 4w + 33]$ $\phantom{-}1$
17 $[17, 17, -4w + 33]$ $\phantom{-}2$
25 $[25, 5, -5]$ $-8$
29 $[29, 29, -70w + 573]$ $\phantom{-}2$
29 $[29, 29, 151w - 1236]$ $\phantom{-}9$
31 $[31, 31, -w - 6]$ $\phantom{-}2$
31 $[31, 31, w - 6]$ $-7$
37 $[37, 37, -21w - 172]$ $-4$
37 $[37, 37, -21w + 172]$ $\phantom{-}0$
43 $[43, 43, 2w - 15]$ $\phantom{-}9$
43 $[43, 43, 2w + 15]$ $-1$
67 $[67, 67, -w]$ $-8$
73 $[73, 73, -3w - 26]$ $-4$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,27w + 221]$ $-1$
7 $[7,7,11w - 90]$ $1$