Properties

Base field \(\Q(\sqrt{67}) \)
Weight [2, 2]
Level norm 12
Level $[12,6,2w + 16]$
Label 2.2.268.1-12.2-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{67}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 67\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[12,6,2w + 16]$
Label 2.2.268.1-12.2-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 20

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -27w + 221]$ $\phantom{-}0$
3 $[3, 3, -w + 8]$ $\phantom{-}2$
3 $[3, 3, -w - 8]$ $-1$
7 $[7, 7, -11w + 90]$ $\phantom{-}0$
7 $[7, 7, -11w - 90]$ $\phantom{-}2$
11 $[11, 11, 6w - 49]$ $\phantom{-}2$
11 $[11, 11, 6w + 49]$ $\phantom{-}4$
17 $[17, 17, 4w + 33]$ $-5$
17 $[17, 17, -4w + 33]$ $-3$
25 $[25, 5, -5]$ $-6$
29 $[29, 29, -70w + 573]$ $-3$
29 $[29, 29, 151w - 1236]$ $-9$
31 $[31, 31, -w - 6]$ $-10$
31 $[31, 31, w - 6]$ $\phantom{-}4$
37 $[37, 37, -21w - 172]$ $-3$
37 $[37, 37, -21w + 172]$ $\phantom{-}1$
43 $[43, 43, 2w - 15]$ $-4$
43 $[43, 43, 2w + 15]$ $\phantom{-}8$
67 $[67, 67, -w]$ $\phantom{-}10$
73 $[73, 73, -3w - 26]$ $\phantom{-}11$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,27w + 221]$ $-1$
3 $[3,3,w + 8]$ $1$