# Properties

 Base field $$\Q(\sqrt{6})$$ Weight [2, 2] Level norm 121 Level $[121, 11, -11]$ Label 2.2.24.1-121.1-a Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{6})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 6$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[121, 11, -11]$ Label 2.2.24.1-121.1-a Dimension 1 Is CM no Is base change yes Parent newspace dimension 32

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $-2$
3 $[3, 3, w - 3]$ $-1$
5 $[5, 5, w + 1]$ $\phantom{-}1$
5 $[5, 5, w - 1]$ $\phantom{-}1$
19 $[19, 19, w + 5]$ $\phantom{-}0$
19 $[19, 19, -w + 5]$ $\phantom{-}0$
23 $[23, 23, -2w + 1]$ $-1$
23 $[23, 23, -2w - 1]$ $-1$
29 $[29, 29, -3w + 5]$ $\phantom{-}0$
29 $[29, 29, -3w - 5]$ $\phantom{-}0$
43 $[43, 43, -w - 7]$ $-6$
43 $[43, 43, w - 7]$ $-6$
47 $[47, 47, 4w - 7]$ $\phantom{-}8$
47 $[47, 47, 6w - 13]$ $\phantom{-}8$
49 $[49, 7, -7]$ $-10$
53 $[53, 53, -3w - 1]$ $-6$
53 $[53, 53, 3w - 1]$ $-6$
67 $[67, 67, -7w + 19]$ $-7$
67 $[67, 67, -3w + 11]$ $-7$
71 $[71, 71, -4w - 5]$ $-3$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
121 $[121, 11, -11]$ $-1$