# Properties

 Base field $$\Q(\sqrt{55})$$ Weight [2, 2] Level norm 8 Level $[8, 4, 2w + 2]$ Label 2.2.220.1-8.1-d Dimension 1 CM no Base change no

# Related objects

## Base field $$\Q(\sqrt{55})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 55$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[8, 4, 2w + 2]$ Label 2.2.220.1-8.1-d Dimension 1 Is CM no Is base change no Parent newspace dimension 40

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $-1$
3 $[3, 3, w + 2]$ $-3$
5 $[5, 5, -2w + 15]$ $\phantom{-}0$
11 $[11, 11, 3w - 22]$ $-4$
13 $[13, 13, w + 4]$ $\phantom{-}6$
13 $[13, 13, w + 9]$ $-2$
17 $[17, 17, w + 2]$ $-3$
17 $[17, 17, w + 15]$ $\phantom{-}5$
19 $[19, 19, -w - 6]$ $-3$
19 $[19, 19, w - 6]$ $-1$
23 $[23, 23, w + 3]$ $\phantom{-}2$
23 $[23, 23, w + 20]$ $\phantom{-}6$
47 $[47, 47, w + 14]$ $-8$
47 $[47, 47, w + 33]$ $\phantom{-}0$
49 $[49, 7, -7]$ $-5$
67 $[67, 67, w + 16]$ $\phantom{-}4$
67 $[67, 67, w + 51]$ $-12$
73 $[73, 73, w + 36]$ $\phantom{-}14$
73 $[73, 73, w + 37]$ $-2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $1$