Properties

Base field \(\Q(\sqrt{55}) \)
Weight [2, 2]
Level norm 8
Level $[8, 4, 2w + 2]$
Label 2.2.220.1-8.1-b
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{55}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 55\); narrow class number \(4\) and class number \(2\).

Form

Weight [2, 2]
Level $[8, 4, 2w + 2]$
Label 2.2.220.1-8.1-b
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 40

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}1$
3 $[3, 3, w + 2]$ $\phantom{-}3$
5 $[5, 5, -2w + 15]$ $\phantom{-}0$
11 $[11, 11, 3w - 22]$ $\phantom{-}4$
13 $[13, 13, w + 4]$ $\phantom{-}6$
13 $[13, 13, w + 9]$ $-2$
17 $[17, 17, w + 2]$ $-3$
17 $[17, 17, w + 15]$ $\phantom{-}5$
19 $[19, 19, -w - 6]$ $\phantom{-}3$
19 $[19, 19, w - 6]$ $\phantom{-}1$
23 $[23, 23, w + 3]$ $-2$
23 $[23, 23, w + 20]$ $-6$
47 $[47, 47, w + 14]$ $\phantom{-}8$
47 $[47, 47, w + 33]$ $\phantom{-}0$
49 $[49, 7, -7]$ $-5$
67 $[67, 67, w + 16]$ $-4$
67 $[67, 67, w + 51]$ $\phantom{-}12$
73 $[73, 73, w + 36]$ $\phantom{-}14$
73 $[73, 73, w + 37]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $1$