# Properties

 Base field $$\Q(\sqrt{55})$$ Weight [2, 2] Level norm 4 Level $[4, 2, 2]$ Label 2.2.220.1-4.1-c Dimension 4 CM yes Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{55})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 55$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[4, 2, 2]$ Label 2.2.220.1-4.1-c Dimension 4 Is CM yes Is base change no Parent newspace dimension 16

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{4}$$ $$\mathstrut -\mathstrut 7x^{2}$$ $$\mathstrut +\mathstrut 4$$
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}e$
3 $[3, 3, w + 2]$ $-e$
5 $[5, 5, -2w + 15]$ $-e^{2} + 2$
11 $[11, 11, 3w - 22]$ $\phantom{-}0$
13 $[13, 13, w + 4]$ $\phantom{-}0$
13 $[13, 13, w + 9]$ $\phantom{-}0$
17 $[17, 17, w + 2]$ $\phantom{-}0$
17 $[17, 17, w + 15]$ $\phantom{-}0$
19 $[19, 19, -w - 6]$ $\phantom{-}0$
19 $[19, 19, w - 6]$ $\phantom{-}0$
23 $[23, 23, w + 3]$ $\phantom{-}2e^{3} - 9e$
23 $[23, 23, w + 20]$ $-2e^{3} + 9e$
47 $[47, 47, w + 14]$ $-e^{3} + 9e$
47 $[47, 47, w + 33]$ $\phantom{-}e^{3} - 9e$
49 $[49, 7, -7]$ $-14$
67 $[67, 67, w + 16]$ $\phantom{-}4e^{3} - 23e$
67 $[67, 67, w + 51]$ $-4e^{3} + 23e$
73 $[73, 73, w + 36]$ $\phantom{-}0$
73 $[73, 73, w + 37]$ $\phantom{-}0$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $-1$