# Properties

 Base field $$\Q(\sqrt{55})$$ Weight [2, 2] Level norm 1 Level $[1, 1, 1]$ Label 2.2.220.1-1.1-d Dimension 4 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{55})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 55$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[1, 1, 1]$ Label 2.2.220.1-1.1-d Dimension 4 Is CM no Is base change no Parent newspace dimension 28

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{4}$$ $$\mathstrut -\mathstrut 28x^{2}$$ $$\mathstrut +\mathstrut 676$$
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w + 1]$ $\phantom{-}\frac{1}{52}e^{3} - \frac{1}{26}e$
3 $[3, 3, w + 2]$ $-\frac{1}{52}e^{3} + \frac{1}{26}e$
5 $[5, 5, -2w + 15]$ $\phantom{-}2$
11 $[11, 11, 3w - 22]$ $-\frac{1}{52}e^{3} + \frac{27}{26}e$
13 $[13, 13, w + 4]$ $-\frac{1}{4}e^{2} + \frac{7}{2}$
13 $[13, 13, w + 9]$ $\phantom{-}\frac{1}{4}e^{2} - \frac{7}{2}$
17 $[17, 17, w + 2]$ $-\frac{1}{4}e^{2} + \frac{7}{2}$
17 $[17, 17, w + 15]$ $\phantom{-}\frac{1}{4}e^{2} - \frac{7}{2}$
19 $[19, 19, -w - 6]$ $\phantom{-}\frac{1}{52}e^{3} - \frac{27}{26}e$
19 $[19, 19, w - 6]$ $\phantom{-}\frac{1}{52}e^{3} - \frac{27}{26}e$
23 $[23, 23, w + 3]$ $\phantom{-}\frac{1}{52}e^{3} - \frac{1}{26}e$
23 $[23, 23, w + 20]$ $-\frac{1}{52}e^{3} + \frac{1}{26}e$
47 $[47, 47, w + 14]$ $-\frac{3}{52}e^{3} + \frac{3}{26}e$
47 $[47, 47, w + 33]$ $\phantom{-}\frac{3}{52}e^{3} - \frac{3}{26}e$
49 $[49, 7, -7]$ $-6$
67 $[67, 67, w + 16]$ $\phantom{-}\frac{3}{52}e^{3} - \frac{3}{26}e$
67 $[67, 67, w + 51]$ $-\frac{3}{52}e^{3} + \frac{3}{26}e$
73 $[73, 73, w + 36]$ $-\frac{1}{4}e^{2} + \frac{7}{2}$
73 $[73, 73, w + 37]$ $\phantom{-}\frac{1}{4}e^{2} - \frac{7}{2}$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

This form has no Atkin-Lehner eigenvalues since the level is $$(1)$$.