Properties

Base field \(\Q(\sqrt{21}) \)
Weight [2, 2]
Level norm 1875
Level $[1875, 75, 25w + 25]$
Label 2.2.21.1-1875.1-z
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{21}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 5\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[1875, 75, 25w + 25]$
Label 2.2.21.1-1875.1-z
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 46

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}1$
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, w]$ $\phantom{-}0$
5 $[5, 5, w - 1]$ $\phantom{-}0$
7 $[7, 7, -w - 3]$ $\phantom{-}3$
17 $[17, 17, -2w + 3]$ $-2$
17 $[17, 17, -2w - 1]$ $-2$
37 $[37, 37, w + 6]$ $-2$
37 $[37, 37, -w + 7]$ $-2$
41 $[41, 41, 3w + 1]$ $-8$
41 $[41, 41, -3w + 4]$ $-8$
43 $[43, 43, 3w + 8]$ $-1$
43 $[43, 43, 3w - 11]$ $-1$
47 $[47, 47, 3w - 2]$ $-2$
47 $[47, 47, 3w - 1]$ $-2$
59 $[59, 59, -5w - 6]$ $-10$
59 $[59, 59, -4w - 3]$ $-10$
67 $[67, 67, -w - 8]$ $\phantom{-}3$
67 $[67, 67, w - 9]$ $\phantom{-}3$
79 $[79, 79, 2w - 11]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $-1$
5 $[5, 5, w]$ $1$
5 $[5, 5, w - 1]$ $1$