Properties

Label 2.2.21.1-16.1-a
Base field \(\Q(\sqrt{21}) \)
Weight $[2, 2]$
Level norm $16$
Level $[16, 4, 4]$
Dimension $1$
CM yes
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{21}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 5\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[16, 4, 4]$
Dimension: $1$
CM: yes
Base change: yes
Newspace dimension: $1$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}0$
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, w]$ $\phantom{-}0$
5 $[5, 5, w - 1]$ $\phantom{-}0$
7 $[7, 7, -w - 3]$ $\phantom{-}4$
17 $[17, 17, -2w + 3]$ $\phantom{-}0$
17 $[17, 17, -2w - 1]$ $\phantom{-}0$
37 $[37, 37, w + 6]$ $\phantom{-}10$
37 $[37, 37, -w + 7]$ $\phantom{-}10$
41 $[41, 41, 3w + 1]$ $\phantom{-}0$
41 $[41, 41, -3w + 4]$ $\phantom{-}0$
43 $[43, 43, 3w + 8]$ $-8$
43 $[43, 43, 3w - 11]$ $-8$
47 $[47, 47, 3w - 2]$ $\phantom{-}0$
47 $[47, 47, 3w - 1]$ $\phantom{-}0$
59 $[59, 59, -5w - 6]$ $\phantom{-}0$
59 $[59, 59, -4w - 3]$ $\phantom{-}0$
67 $[67, 67, -w - 8]$ $-16$
67 $[67, 67, w - 9]$ $-16$
79 $[79, 79, 2w - 11]$ $-4$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $1$