# Properties

 Base field $$\Q(\sqrt{21})$$ Weight [2, 2] Level norm 1444 Level $[1444, 38, -38]$ Label 2.2.21.1-1444.1-f Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{21})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 5$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[1444, 38, -38]$ Label 2.2.21.1-1444.1-f Dimension 1 Is CM no Is base change yes Parent newspace dimension 6

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $-1$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, w]$ $-4$
5 $[5, 5, w - 1]$ $-4$
7 $[7, 7, -w - 3]$ $\phantom{-}3$
17 $[17, 17, -2w + 3]$ $\phantom{-}3$
17 $[17, 17, -2w - 1]$ $\phantom{-}3$
37 $[37, 37, w + 6]$ $-2$
37 $[37, 37, -w + 7]$ $-2$
41 $[41, 41, 3w + 1]$ $-8$
41 $[41, 41, -3w + 4]$ $-8$
43 $[43, 43, 3w + 8]$ $\phantom{-}4$
43 $[43, 43, 3w - 11]$ $\phantom{-}4$
47 $[47, 47, 3w - 2]$ $\phantom{-}8$
47 $[47, 47, 3w - 1]$ $\phantom{-}8$
59 $[59, 59, -5w - 6]$ $\phantom{-}15$
59 $[59, 59, -4w - 3]$ $\phantom{-}15$
67 $[67, 67, -w - 8]$ $\phantom{-}3$
67 $[67, 67, w - 9]$ $\phantom{-}3$
79 $[79, 79, 2w - 11]$ $-10$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
361 $[361, 19, -19]$ $-1$