# Properties

 Base field $$\Q(\sqrt{201})$$ Weight [2, 2] Level norm 32 Level $[32, 16, -2w + 14]$ Label 2.2.201.1-32.3-h Dimension 3 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{201})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 50$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[32, 16, -2w + 14]$ Label 2.2.201.1-32.3-h Dimension 3 Is CM no Is base change no Parent newspace dimension 48

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{3}$$ $$\mathstrut -\mathstrut x^{2}$$ $$\mathstrut -\mathstrut 4x$$ $$\mathstrut +\mathstrut 3$$
Norm Prime Eigenvalue
2 $[2, 2, -17w - 112]$ $-1$
2 $[2, 2, -17w + 129]$ $\phantom{-}0$
3 $[3, 3, -124w + 941]$ $\phantom{-}e$
5 $[5, 5, -2w + 15]$ $\phantom{-}e^{2} - e - 3$
5 $[5, 5, -2w - 13]$ $-e^{2} + e + 3$
11 $[11, 11, 12w + 79]$ $\phantom{-}e^{2} + 2e - 6$
11 $[11, 11, -12w + 91]$ $\phantom{-}e^{2} + 2e - 6$
19 $[19, 19, -90w - 593]$ $-2e^{2} + 2e + 6$
19 $[19, 19, 90w - 683]$ $\phantom{-}2e^{2} - 2e - 6$
37 $[37, 37, -4w - 27]$ $-4e^{2} - 2e + 12$
37 $[37, 37, -4w + 31]$ $-4e^{2} - 2e + 12$
41 $[41, 41, 158w + 1041]$ $-6$
41 $[41, 41, 158w - 1199]$ $\phantom{-}6$
49 $[49, 7, -7]$ $-4e^{2} + 4e + 10$
53 $[53, 53, 46w - 349]$ $-3e - 6$
53 $[53, 53, 46w + 303]$ $\phantom{-}3e + 6$
67 $[67, 67, 586w - 4447]$ $\phantom{-}0$
73 $[73, 73, -32w - 211]$ $\phantom{-}e^{2} - 4e - 6$
73 $[73, 73, 32w - 243]$ $\phantom{-}e^{2} - 4e - 6$
101 $[101, 101, 2w - 11]$ $-4e^{2} - 5e + 18$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -17w - 112]$ $1$
2 $[2, 2, -17w + 129]$ $-1$