Properties

Base field \(\Q(\sqrt{197}) \)
Weight [2, 2]
Level norm 9
Level $[9, 3, 3]$
Label 2.2.197.1-9.1-d
Dimension 4
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{197}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 49\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[9, 3, 3]$
Label 2.2.197.1-9.1-d
Dimension 4
Is CM no
Is base change no
Parent newspace dimension 30

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{4} \) \(\mathstrut -\mathstrut 3x^{3} \) \(\mathstrut -\mathstrut 23x^{2} \) \(\mathstrut +\mathstrut 41x \) \(\mathstrut +\mathstrut 139\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}\frac{1}{11}e^{3} - \frac{1}{11}e^{2} - \frac{14}{11}e - \frac{20}{11}$
7 $[7, 7, w - 7]$ $\phantom{-}\frac{1}{11}e^{3} - \frac{1}{11}e^{2} - \frac{25}{11}e + \frac{13}{11}$
7 $[7, 7, w + 6]$ $\phantom{-}e$
9 $[9, 3, 3]$ $-1$
19 $[19, 19, w + 5]$ $-\frac{2}{11}e^{3} - \frac{9}{11}e^{2} + \frac{39}{11}e + \frac{150}{11}$
19 $[19, 19, w - 6]$ $\phantom{-}e^{2} - e - 13$
23 $[23, 23, w + 8]$ $-\frac{2}{11}e^{3} + \frac{2}{11}e^{2} + \frac{39}{11}e + \frac{40}{11}$
23 $[23, 23, -w + 9]$ $-\frac{1}{11}e^{3} + \frac{1}{11}e^{2} + \frac{3}{11}e + \frac{53}{11}$
25 $[25, 5, 5]$ $-\frac{3}{11}e^{3} + \frac{3}{11}e^{2} + \frac{42}{11}e - \frac{50}{11}$
29 $[29, 29, -w - 4]$ $-\frac{1}{11}e^{3} + \frac{1}{11}e^{2} + \frac{14}{11}e - \frac{24}{11}$
29 $[29, 29, w - 5]$ $-\frac{1}{11}e^{3} + \frac{1}{11}e^{2} + \frac{14}{11}e - \frac{24}{11}$
37 $[37, 37, -w - 3]$ $\phantom{-}\frac{5}{11}e^{3} + \frac{6}{11}e^{2} - \frac{92}{11}e - \frac{155}{11}$
37 $[37, 37, w - 4]$ $\phantom{-}\frac{2}{11}e^{3} - \frac{13}{11}e^{2} - \frac{6}{11}e + \frac{125}{11}$
41 $[41, 41, -w - 9]$ $\phantom{-}\frac{5}{11}e^{3} - \frac{5}{11}e^{2} - \frac{59}{11}e - \frac{1}{11}$
41 $[41, 41, w - 10]$ $\phantom{-}\frac{6}{11}e^{3} - \frac{6}{11}e^{2} - \frac{95}{11}e + \frac{12}{11}$
43 $[43, 43, -w - 2]$ $-\frac{1}{11}e^{3} + \frac{12}{11}e^{2} - \frac{8}{11}e - \frac{145}{11}$
43 $[43, 43, w - 3]$ $-\frac{4}{11}e^{3} - \frac{7}{11}e^{2} + \frac{78}{11}e + \frac{135}{11}$
47 $[47, 47, -w - 1]$ $\phantom{-}\frac{1}{11}e^{3} - \frac{1}{11}e^{2} - \frac{14}{11}e - \frac{42}{11}$
47 $[47, 47, w - 2]$ $\phantom{-}\frac{1}{11}e^{3} - \frac{1}{11}e^{2} - \frac{14}{11}e - \frac{42}{11}$
53 $[53, 53, 2w - 13]$ $-\frac{2}{11}e^{3} - \frac{9}{11}e^{2} + \frac{61}{11}e + \frac{139}{11}$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
9 $[9, 3, 3]$ $1$