Properties

Base field \(\Q(\sqrt{197}) \)
Weight [2, 2]
Level norm 28
Level $[28,14,-2w - 12]$
Label 2.2.197.1-28.2-b
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{197}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 49\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[28,14,-2w - 12]$
Label 2.2.197.1-28.2-b
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 75

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, w - 7]$ $\phantom{-}2$
7 $[7, 7, w + 6]$ $-1$
9 $[9, 3, 3]$ $\phantom{-}5$
19 $[19, 19, w + 5]$ $-8$
19 $[19, 19, w - 6]$ $-2$
23 $[23, 23, w + 8]$ $\phantom{-}6$
23 $[23, 23, -w + 9]$ $-7$
25 $[25, 5, 5]$ $-4$
29 $[29, 29, -w - 4]$ $-9$
29 $[29, 29, w - 5]$ $\phantom{-}6$
37 $[37, 37, -w - 3]$ $-4$
37 $[37, 37, w - 4]$ $-2$
41 $[41, 41, -w - 9]$ $-8$
41 $[41, 41, w - 10]$ $\phantom{-}6$
43 $[43, 43, -w - 2]$ $\phantom{-}1$
43 $[43, 43, w - 3]$ $-2$
47 $[47, 47, -w - 1]$ $\phantom{-}6$
47 $[47, 47, w - 2]$ $-8$
53 $[53, 53, 2w - 13]$ $-10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4,2,2]$ $-1$
7 $[7,7,-w - 6]$ $1$