Properties

Base field \(\Q(\sqrt{197}) \)
Weight [2, 2]
Level norm 28
Level $[28, 14, 2w - 14]$
Label 2.2.197.1-28.1-d
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{197}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 49\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[28, 14, 2w - 14]$
Label 2.2.197.1-28.1-d
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 75

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} \) \(\mathstrut -\mathstrut 2x \) \(\mathstrut -\mathstrut 12\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, w - 7]$ $\phantom{-}1$
7 $[7, 7, w + 6]$ $\phantom{-}e$
9 $[9, 3, 3]$ $-2$
19 $[19, 19, w + 5]$ $\phantom{-}\frac{3}{2}e - 1$
19 $[19, 19, w - 6]$ $\phantom{-}\frac{1}{2}e + 1$
23 $[23, 23, w + 8]$ $-6$
23 $[23, 23, -w + 9]$ $\phantom{-}e - 2$
25 $[25, 5, 5]$ $-\frac{1}{2}e - 3$
29 $[29, 29, -w - 4]$ $\phantom{-}e - 2$
29 $[29, 29, w - 5]$ $\phantom{-}6$
37 $[37, 37, -w - 3]$ $-4$
37 $[37, 37, w - 4]$ $\phantom{-}e$
41 $[41, 41, -w - 9]$ $-\frac{3}{2}e + 6$
41 $[41, 41, w - 10]$ $-\frac{1}{2}e + 4$
43 $[43, 43, -w - 2]$ $\phantom{-}\frac{3}{2}e - 4$
43 $[43, 43, w - 3]$ $\phantom{-}\frac{3}{2}e + 2$
47 $[47, 47, -w - 1]$ $\phantom{-}e - 8$
47 $[47, 47, w - 2]$ $-e + 2$
53 $[53, 53, 2w - 13]$ $\phantom{-}e - 8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
7 $[7, 7, w - 7]$ $-1$