# Properties

 Base field $$\Q(\sqrt{197})$$ Weight [2, 2] Level norm 16 Level $[16, 4, 4]$ Label 2.2.197.1-16.1-a Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{197})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 49$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[16, 4, 4]$ Label 2.2.197.1-16.1-a Dimension 2 Is CM no Is base change no Parent newspace dimension 40

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2}$$ $$\mathstrut -\mathstrut x$$ $$\mathstrut -\mathstrut 1$$
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}0$
7 $[7, 7, w - 7]$ $-e + 1$
7 $[7, 7, w + 6]$ $\phantom{-}e$
9 $[9, 3, 3]$ $\phantom{-}0$
19 $[19, 19, w + 5]$ $-3e$
19 $[19, 19, w - 6]$ $\phantom{-}3e - 3$
23 $[23, 23, w + 8]$ $-5e + 1$
23 $[23, 23, -w + 9]$ $\phantom{-}5e - 4$
25 $[25, 5, 5]$ $-1$
29 $[29, 29, -w - 4]$ $-5e + 3$
29 $[29, 29, w - 5]$ $\phantom{-}5e - 2$
37 $[37, 37, -w - 3]$ $-6e + 4$
37 $[37, 37, w - 4]$ $\phantom{-}6e - 2$
41 $[41, 41, -w - 9]$ $\phantom{-}4e - 6$
41 $[41, 41, w - 10]$ $-4e - 2$
43 $[43, 43, -w - 2]$ $-4e + 10$
43 $[43, 43, w - 3]$ $\phantom{-}4e + 6$
47 $[47, 47, -w - 1]$ $-3$
47 $[47, 47, w - 2]$ $-3$
53 $[53, 53, 2w - 13]$ $-4e - 5$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$