# Properties

 Base field $$\Q(\sqrt{157})$$ Weight [2, 2] Level norm 9 Level $[9, 9, -w + 6]$ Label 2.2.157.1-9.2-e Dimension 6 CM no Base change no

# Related objects

• L-function not available

## Base field $$\Q(\sqrt{157})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 39$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[9, 9, -w + 6]$ Label 2.2.157.1-9.2-e Dimension 6 Is CM no Is base change no Parent newspace dimension 16

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{6}$$ $$\mathstrut -\mathstrut 11x^{4}$$ $$\mathstrut +\mathstrut 28x^{2}$$ $$\mathstrut -\mathstrut 16$$
Norm Prime Eigenvalue
3 $[3, 3, w + 6]$ $\phantom{-}0$
3 $[3, 3, -w + 7]$ $\phantom{-}\frac{1}{4}e^{4} - \frac{11}{4}e^{2} + 5$
4 $[4, 2, 2]$ $\phantom{-}e$
11 $[11, 11, -3w - 17]$ $\phantom{-}\frac{3}{4}e^{4} - \frac{25}{4}e^{2} + 7$
11 $[11, 11, 3w - 20]$ $\phantom{-}\frac{1}{4}e^{5} - \frac{11}{4}e^{3} + 7e$
13 $[13, 13, 2w - 13]$ $-\frac{1}{4}e^{4} + \frac{11}{4}e^{2} - 2$
13 $[13, 13, 2w + 11]$ $\phantom{-}\frac{5}{4}e^{4} - \frac{43}{4}e^{2} + 13$
17 $[17, 17, w + 7]$ $-\frac{1}{4}e^{4} + \frac{11}{4}e^{2} - 4$
17 $[17, 17, -w + 8]$ $-\frac{1}{4}e^{5} + \frac{11}{4}e^{3} - 6e$
19 $[19, 19, -w - 4]$ $-e^{3} + 5e$
19 $[19, 19, -w + 5]$ $-\frac{3}{4}e^{5} + \frac{29}{4}e^{3} - 10e$
25 $[25, 5, 5]$ $-\frac{1}{2}e^{5} + \frac{9}{2}e^{3} - 7e$
31 $[31, 31, -6w - 35]$ $\phantom{-}\frac{1}{4}e^{5} - \frac{7}{4}e^{3}$
31 $[31, 31, -6w + 41]$ $-\frac{1}{2}e^{5} + \frac{7}{2}e^{3}$
37 $[37, 37, -w - 1]$ $\phantom{-}e^{3} - 8e$
37 $[37, 37, w - 2]$ $\phantom{-}\frac{3}{4}e^{5} - \frac{29}{4}e^{3} + 13e$
47 $[47, 47, 3w + 16]$ $-\frac{3}{2}e^{5} + \frac{29}{2}e^{3} - 22e$
47 $[47, 47, -3w + 19]$ $\phantom{-}\frac{3}{4}e^{4} - \frac{21}{4}e^{2} + 8$
49 $[49, 7, -7]$ $-\frac{1}{4}e^{4} + \frac{3}{4}e^{2} + 2$
67 $[67, 67, 3w - 22]$ $-\frac{5}{4}e^{4} + \frac{51}{4}e^{2} - 22$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w + 6]$ $1$